找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Third International M. Jorge Cardoso,Tal Ar

[復(fù)制鏈接]
樓主: T-Lymphocyte
21#
發(fā)表于 2025-3-25 03:56:06 | 只看該作者
Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
22#
發(fā)表于 2025-3-25 08:38:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:33:04 | 只看該作者
Conference proceedings 2017d at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..
24#
發(fā)表于 2025-3-25 18:49:14 | 只看該作者
25#
發(fā)表于 2025-3-25 19:57:51 | 只看該作者
26#
發(fā)表于 2025-3-26 02:45:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:17:56 | 只看該作者
28#
發(fā)表于 2025-3-26 08:45:29 | 只看該作者
JingMin Huang,Gianluca Stringhini,Peng Yong has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
29#
發(fā)表于 2025-3-26 13:00:17 | 只看該作者
Alessandro Erba,Nils Ole Tippenhaueraining in a semi-supervised setting. Using two types of medical imaging data (liver CT and left ventricle MRI data), we show that the integrated method achieves good performance even when little training data is available, outperforming the FCN or the level set model alone.
30#
發(fā)表于 2025-3-26 20:30:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 23:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎左旗| 宜都市| 蒙阴县| 五指山市| 永嘉县| 清水河县| 榕江县| 高陵县| 怀远县| 沅陵县| 视频| 葫芦岛市| 遂溪县| 曲水县| 开鲁县| 都昌县| 龙岩市| 池州市| 涡阳县| 南和县| 长子县| 西盟| 韶山市| 咸丰县| 上思县| 潼南县| 民权县| 临澧县| 孟州市| 卢氏县| 张北县| 玛沁县| 常德市| 左云县| 万州区| 上高县| 郁南县| 墨玉县| 鸡东县| 靖西县| 金平|