找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Third International M. Jorge Cardoso,Tal Ar

[復(fù)制鏈接]
查看: 51545|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:43:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
副標(biāo)題Third International
編輯M. Jorge Cardoso,Tal Arbel,Zhi Lu
視頻videohttp://file.papertrans.cn/265/264623/264623.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Third International  M. Jorge Cardoso,Tal Ar
描述.This book constitutes the refereed joint proceedings of the Third International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017, and the 6th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017, held in conjunction with the 20th International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2017, in Québec City, QC, Canada, in September 2017...The 38 full papers presented at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..
出版日期Conference proceedings 2017
關(guān)鍵詞artificial intelligence; classification; classification accuracy; computer architecture; computer vision
版次1
doihttps://doi.org/10.1007/978-3-319-67558-9
isbn_softcover978-3-319-67557-2
isbn_ebook978-3-319-67558-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support影響因子(影響力)




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support影響因子(影響力)學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support網(wǎng)絡(luò)公開度




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support被引頻次




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support被引頻次學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support年度引用




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support年度引用學(xué)科排名




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support讀者反饋




書目名稱Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:41:06 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:04:18 | 只看該作者
Left Atrium Segmentation in CT Volumes with?Fully Convolutional Networksystems. This paper presents an approach to automatically segmenting left atrium in 3D CT volumes using fully convolutional neural networks (FCNs). We train FCN for automatic segmentation of the left atrium, and then refine the segmentation results of the FCN using the knowledge of the left ventricle
5#
發(fā)表于 2025-3-22 09:49:02 | 只看該作者
3D Randomized Connection Network with?Graph-Based Inferencency between layers and increase the network capacity. The convolutional LSTM and 3D convolution are employed as network units to capture the long-term and short-term 3D properties respectively. To assemble these two kinds of spatial-temporal information and refine the deep learning outcomes, we furt
6#
發(fā)表于 2025-3-22 13:36:19 | 只看該作者
7#
發(fā)表于 2025-3-22 19:12:11 | 只看該作者
8#
發(fā)表于 2025-3-22 22:17:43 | 只看該作者
Region-Aware Deep Localization Framework for?Cervical Vertebrae in X-Ray Imagesjury detection system, we propose a localization framework for the cervical spine in X-ray images. The proposed framework employs a segmentation approach to solve the localization problem. As the cervical spine is a single connected component, we introduce a novel region-aware loss function for trai
9#
發(fā)表于 2025-3-23 04:09:00 | 只看該作者
10#
發(fā)表于 2025-3-23 08:09:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上虞市| 公安县| 盐源县| 潮安县| 镇沅| 建德市| 贵德县| 河间市| 梨树县| 治县。| 仪陇县| 黑水县| 广宁县| 宣恩县| 延庆县| 元谋县| 德庆县| 义乌市| 泸水县| 老河口市| 清水河县| 托里县| 济宁市| 扎兰屯市| 阳新县| 延吉市| 海淀区| 潍坊市| 黄平县| 简阳市| 平潭县| 广汉市| 滦南县| 河源市| 锡林浩特市| 驻马店市| 平远县| 梁山县| 广饶县| 巫山县| 平利县|