找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Third International M. Jorge Cardoso,Tal Ar

[復(fù)制鏈接]
樓主: T-Lymphocyte
21#
發(fā)表于 2025-3-25 03:56:06 | 只看該作者
Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
22#
發(fā)表于 2025-3-25 08:38:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:33:04 | 只看該作者
Conference proceedings 2017d at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..
24#
發(fā)表于 2025-3-25 18:49:14 | 只看該作者
25#
發(fā)表于 2025-3-25 19:57:51 | 只看該作者
26#
發(fā)表于 2025-3-26 02:45:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:17:56 | 只看該作者
28#
發(fā)表于 2025-3-26 08:45:29 | 只看該作者
JingMin Huang,Gianluca Stringhini,Peng Yong has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
29#
發(fā)表于 2025-3-26 13:00:17 | 只看該作者
Alessandro Erba,Nils Ole Tippenhaueraining in a semi-supervised setting. Using two types of medical imaging data (liver CT and left ventricle MRI data), we show that the integrated method achieves good performance even when little training data is available, outperforming the FCN or the level set model alone.
30#
發(fā)表于 2025-3-26 20:30:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
勃利县| 承德县| 万荣县| 宿州市| 灵山县| 巩义市| 得荣县| 务川| 舟山市| 安远县| 浦县| 海安县| 河北区| 丰镇市| 静乐县| 平顶山市| 南安市| 丹阳市| 泉州市| 同德县| 贡觉县| 农安县| 莎车县| 漳州市| 蓬莱市| 泽库县| 泽州县| 阳朔县| 锡林浩特市| 靖边县| 济阳县| 阿克| 江山市| 普格县| 开远市| 新巴尔虎右旗| 大同市| 中牟县| 沾化县| 伊通| 昆山市|