找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Third International M. Jorge Cardoso,Tal Ar

[復(fù)制鏈接]
樓主: T-Lymphocyte
21#
發(fā)表于 2025-3-25 03:56:06 | 只看該作者
Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
22#
發(fā)表于 2025-3-25 08:38:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:33:04 | 只看該作者
Conference proceedings 2017d at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..
24#
發(fā)表于 2025-3-25 18:49:14 | 只看該作者
25#
發(fā)表于 2025-3-25 19:57:51 | 只看該作者
26#
發(fā)表于 2025-3-26 02:45:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:17:56 | 只看該作者
28#
發(fā)表于 2025-3-26 08:45:29 | 只看該作者
JingMin Huang,Gianluca Stringhini,Peng Yong has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
29#
發(fā)表于 2025-3-26 13:00:17 | 只看該作者
Alessandro Erba,Nils Ole Tippenhaueraining in a semi-supervised setting. Using two types of medical imaging data (liver CT and left ventricle MRI data), we show that the integrated method achieves good performance even when little training data is available, outperforming the FCN or the level set model alone.
30#
發(fā)表于 2025-3-26 20:30:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
壤塘县| 合水县| 杭锦后旗| 石柱| 浪卡子县| 屯留县| 瓮安县| 广昌县| 赤城县| 黄梅县| 广平县| 双城市| 枣庄市| 南川市| 东辽县| 甘洛县| 安达市| 全椒县| 清丰县| 普定县| 拉孜县| 漯河市| 扬中市| 牡丹江市| 枣强县| 奇台县| 任丘市| 静宁县| 宜宾市| 墨玉县| 千阳县| 高青县| 丰台区| 灵武市| 福泉市| 太湖县| 两当县| 太仓市| 晋宁县| 荣成市| 兴隆县|