找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[復(fù)制鏈接]
樓主: 與生
41#
發(fā)表于 2025-3-28 15:59:27 | 只看該作者
42#
發(fā)表于 2025-3-28 22:21:55 | 只看該作者
43#
發(fā)表于 2025-3-29 00:01:06 | 只看該作者
Deep Learning in Healthcare978-3-030-32606-7Series ISSN 1868-4394 Series E-ISSN 1868-4408
44#
發(fā)表于 2025-3-29 03:46:47 | 只看該作者
45#
發(fā)表于 2025-3-29 09:52:57 | 只看該作者
46#
發(fā)表于 2025-3-29 11:29:42 | 只看該作者
Destillier- und Rektifiziertechnikmon deep learning architectures for image detection are briefly explained, including scanning-based methods and end-to-end detection systems. Some considerations about the training scheme and loss functions are also included. Then, an overview of relevant publications in anatomical and pathological
47#
發(fā)表于 2025-3-29 17:52:02 | 只看該作者
Erratum to: Theoretische Grundlagen,llenges of medical image segmentation, for which actual approaches to overcome those limitations are discussed. Secondly, supervised and semi-supervised architectures are described, where encoder-decoder type networks are the most widely employed ones. Nonetheless, generative adversarial network-bas
48#
發(fā)表于 2025-3-29 20:27:54 | 只看該作者
Barbara Neuhofer,Lukas Grundnern. In traditional image classification, low-level or mid-level features are extracted to represent the image and a trainable classifier is then used for label assignments. In recent years, the high-level feature representation of deep convolutional neural networks has proven to be superior to hand-c
49#
發(fā)表于 2025-3-30 00:51:13 | 只看該作者
https://doi.org/10.1007/978-3-658-39879-8 methods about convolutional layer, deconvolution layer, loss function and evaluation functions for beginners to easily understand. Then, typical state-of-the-art super-resolution methods using 2D or 3D convolution neural networks will be introduced. From the experimental results of the network intr
50#
發(fā)表于 2025-3-30 06:37:39 | 只看該作者
https://doi.org/10.1007/978-3-658-28110-6gh CNNs have achieved state-of-the-art performances, most researches on semantic segmentation using the deep learning methods are in the field of computer vision, so the research on medical images is much less mature than that of natural images, especially, in the field of 3D image segmentation. Our
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广丰县| 尤溪县| 义乌市| 正阳县| 屏边| 万年县| 天长市| 青龙| 阳江市| 沁阳市| 普兰店市| 临湘市| 祥云县| 南京市| 石门县| 深水埗区| 长乐市| 彰武县| 梓潼县| 岢岚县| 曲松县| 温州市| 靖西县| 万山特区| 墨玉县| 长治市| 新津县| 济南市| 方城县| 翁牛特旗| 江北区| 泗水县| 凤冈县| 稷山县| 寿宁县| 龙南县| 衡水市| 布尔津县| 东乌| 襄城县| 呼图壁县|