找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[復制鏈接]
查看: 56010|回復: 51
樓主
發(fā)表于 2025-3-21 17:10:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning in Healthcare
副標題Paradigms and Applic
編輯Yen-Wei Chen,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/265/264620/264620.mp4
概述Discusses the advances and future of deep learning in medicine and health care.Includes a comprehensiveCC introduction to deep learning.Focuses on medical imaging and computer-aided diagnosis
叢書名稱Intelligent Systems Reference Library
圖書封面Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M
描述.This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems...Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data...Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.. .
出版日期Book 2020
關鍵詞Deep Learning; Machine Learning; Medical Image Analysis; Segmentation; Classification; Detection; Computer
版次1
doihttps://doi.org/10.1007/978-3-030-32606-7
isbn_softcover978-3-030-32608-1
isbn_ebook978-3-030-32606-7Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Deep Learning in Healthcare影響因子(影響力)




書目名稱Deep Learning in Healthcare影響因子(影響力)學科排名




書目名稱Deep Learning in Healthcare網絡公開度




書目名稱Deep Learning in Healthcare網絡公開度學科排名




書目名稱Deep Learning in Healthcare被引頻次




書目名稱Deep Learning in Healthcare被引頻次學科排名




書目名稱Deep Learning in Healthcare年度引用




書目名稱Deep Learning in Healthcare年度引用學科排名




書目名稱Deep Learning in Healthcare讀者反饋




書目名稱Deep Learning in Healthcare讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:37:25 | 只看該作者
Medical Image Segmentation Using Deep Learningllenges of medical image segmentation, for which actual approaches to overcome those limitations are discussed. Secondly, supervised and semi-supervised architectures are described, where encoder-decoder type networks are the most widely employed ones. Nonetheless, generative adversarial network-bas
板凳
發(fā)表于 2025-3-22 03:42:50 | 只看該作者
地板
發(fā)表于 2025-3-22 07:06:38 | 只看該作者
Medical Image Enhancement Using Deep Learning methods about convolutional layer, deconvolution layer, loss function and evaluation functions for beginners to easily understand. Then, typical state-of-the-art super-resolution methods using 2D or 3D convolution neural networks will be introduced. From the experimental results of the network intr
5#
發(fā)表于 2025-3-22 09:53:53 | 只看該作者
6#
發(fā)表于 2025-3-22 13:45:54 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:14 | 只看該作者
9#
發(fā)表于 2025-3-23 05:12:49 | 只看該作者
Multi-scale Deep Convolutional Neural Networks for Emphysema Classification and Quantification extracting low-level features or mid-level features without enough high-level information. Moreover, these approaches do not take the characteristics (scales) of different emphysema into account, which are crucial for feature extraction. In contrast to previous works, we propose a novel deep learni
10#
發(fā)表于 2025-3-23 08:33:04 | 只看該作者
Opacity Labeling of Diffuse Lung Diseases in CT Images Using Unsupervised and Semi-supervised Learniy deep learning, requires a large number of training data with annotations. Deep learning often requires thousands of training data, but it is tough work for radiologists to give normal and abnormal labels to many images. In this research, aiming the efficient opacity annotation of diffuse lung dise
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-21 22:49
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阜阳市| 慈溪市| 弥渡县| 太白县| 花垣县| 方正县| 大悟县| 虞城县| 象山县| 闻喜县| 东阿县| 南乐县| 卢氏县| 勃利县| 本溪| 江都市| 西和县| 蒙山县| 姜堰市| 东兴市| 张家川| 龙州县| 华宁县| 六安市| 连州市| 固阳县| 大足县| 乌拉特中旗| 鄂尔多斯市| 岳普湖县| 五寨县| 宣恩县| 和平县| 丰县| 宁远县| 贡觉县| 绥芬河市| 宁乡县| 兴业县| 太湖县| 襄汾县|