找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[復制鏈接]
樓主: 與生
21#
發(fā)表于 2025-3-25 05:49:42 | 只看該作者
22#
發(fā)表于 2025-3-25 11:09:24 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:42 | 只看該作者
Overcrowding in mature destination images. Then, a landmark-based deep learning framework is presented for AD/MCI classification, by jointly performing feature extraction and classifier training. Experimental results on three public databases demonstrate that the proposed framework boosts the disease diagnosis performance, compared with several state-of-the-art sMRI-based methods.
24#
發(fā)表于 2025-3-25 19:52:15 | 只看該作者
25#
發(fā)表于 2025-3-26 00:01:39 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:46 | 只看該作者
Opacity Labeling of Diffuse Lung Diseases in CT Images Using Unsupervised and Semi-supervised Learniation for training classifiers. The performance evaluation is carried out by clustering or classification of six kinds of opacities of diffuse lung diseases in computed tomography (CT) images: consolidation, ground-glass opacity, honeycombing, emphysema, nodular and normal, and the effectiveness of the proposed methods is clarified.
27#
發(fā)表于 2025-3-26 05:46:06 | 只看該作者
Medical Image Classification Using Deep Learninging to classification of focal liver lesions on multi-phase CT images. The main challenge in deep-learning-based medical image classification is the lack of annotated training samples. We demonstrate that fine-tuning can significantly improve the accuracy of liver lesion classification, especially f
28#
發(fā)表于 2025-3-26 08:53:40 | 只看該作者
29#
發(fā)表于 2025-3-26 16:23:08 | 只看該作者
Deep Active Self-paced Learning for Biomedical Image Analysisrain it with the DASL strategy. Experimental results show that the proposed models trained with our DASL strategy perform much better than those trained without DASL using the same amount of annotated samples.
30#
發(fā)表于 2025-3-26 20:06:33 | 只看該作者
Deep Learning in Textural Medical Image Analysisined feature representations by an activation visualization method, and by measuring the frequency response of trained neural networks, in both qualitative and quantitative ways, respectively. These results demonstrate that such successive transfer learning enables networks to grasp both structural
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 22:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
台东市| 昌乐县| 芦溪县| 云龙县| 彩票| 彝良县| 九台市| 青州市| 仙居县| 台东市| 石台县| 合江县| 淮南市| 浦城县| 河西区| 潼关县| 温泉县| 南和县| 贵港市| 汉寿县| 新乐市| 慈利县| 清镇市| 山阴县| 班玛县| 福州市| 平果县| 科尔| 赤城县| 分宜县| 色达县| 怀柔区| 诸城市| 苍南县| 沐川县| 康马县| 阳原县| 和平区| 永德县| 吉木萨尔县| 万载县|