找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[復(fù)制鏈接]
查看: 56007|回復(fù): 51
樓主
發(fā)表于 2025-3-21 17:10:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Learning in Healthcare
副標(biāo)題Paradigms and Applic
編輯Yen-Wei Chen,Lakhmi C. Jain
視頻videohttp://file.papertrans.cn/265/264620/264620.mp4
概述Discusses the advances and future of deep learning in medicine and health care.Includes a comprehensiveCC introduction to deep learning.Focuses on medical imaging and computer-aided diagnosis
叢書名稱Intelligent Systems Reference Library
圖書封面Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M
描述.This book provides a comprehensive overview of deep learning (DL) in medical and healthcare applications, including the fundamentals and current advances in medical image analysis, state-of-the-art DL methods for medical image analysis and real-world, deep learning-based clinical computer-aided diagnosis systems...Deep learning (DL) is one of the key techniques of artificial intelligence (AI) and today plays an important role in numerous academic and industrial areas. DL involves using a neural network with many layers (deep structure) between input and output, and its main advantage of is that it can automatically learn data-driven, highly representative and hierarchical features and perform feature extraction and classification on one network. DL can be used to model or simulate an intelligent system or process using annotated training data...Recently, DL has become widely used in medical applications, such as anatomic modelling, tumour detection, disease classification, computer-aided diagnosis and surgical planning. This book is intended for computer science and engineering students and researchers, medical professionals and anyone interested using DL techniques.. .
出版日期Book 2020
關(guān)鍵詞Deep Learning; Machine Learning; Medical Image Analysis; Segmentation; Classification; Detection; Computer
版次1
doihttps://doi.org/10.1007/978-3-030-32606-7
isbn_softcover978-3-030-32608-1
isbn_ebook978-3-030-32606-7Series ISSN 1868-4394 Series E-ISSN 1868-4408
issn_series 1868-4394
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Deep Learning in Healthcare影響因子(影響力)




書目名稱Deep Learning in Healthcare影響因子(影響力)學(xué)科排名




書目名稱Deep Learning in Healthcare網(wǎng)絡(luò)公開度




書目名稱Deep Learning in Healthcare網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Learning in Healthcare被引頻次




書目名稱Deep Learning in Healthcare被引頻次學(xué)科排名




書目名稱Deep Learning in Healthcare年度引用




書目名稱Deep Learning in Healthcare年度引用學(xué)科排名




書目名稱Deep Learning in Healthcare讀者反饋




書目名稱Deep Learning in Healthcare讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:37:25 | 只看該作者
Medical Image Segmentation Using Deep Learningllenges of medical image segmentation, for which actual approaches to overcome those limitations are discussed. Secondly, supervised and semi-supervised architectures are described, where encoder-decoder type networks are the most widely employed ones. Nonetheless, generative adversarial network-bas
板凳
發(fā)表于 2025-3-22 03:42:50 | 只看該作者
地板
發(fā)表于 2025-3-22 07:06:38 | 只看該作者
Medical Image Enhancement Using Deep Learning methods about convolutional layer, deconvolution layer, loss function and evaluation functions for beginners to easily understand. Then, typical state-of-the-art super-resolution methods using 2D or 3D convolution neural networks will be introduced. From the experimental results of the network intr
5#
發(fā)表于 2025-3-22 09:53:53 | 只看該作者
6#
發(fā)表于 2025-3-22 13:45:54 | 只看該作者
7#
發(fā)表于 2025-3-22 18:19:54 | 只看該作者
8#
發(fā)表于 2025-3-22 22:30:14 | 只看該作者
9#
發(fā)表于 2025-3-23 05:12:49 | 只看該作者
Multi-scale Deep Convolutional Neural Networks for Emphysema Classification and Quantification extracting low-level features or mid-level features without enough high-level information. Moreover, these approaches do not take the characteristics (scales) of different emphysema into account, which are crucial for feature extraction. In contrast to previous works, we propose a novel deep learni
10#
發(fā)表于 2025-3-23 08:33:04 | 只看該作者
Opacity Labeling of Diffuse Lung Diseases in CT Images Using Unsupervised and Semi-supervised Learniy deep learning, requires a large number of training data with annotations. Deep learning often requires thousands of training data, but it is tough work for radiologists to give normal and abnormal labels to many images. In this research, aiming the efficient opacity annotation of diffuse lung dise
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰顺县| 怀来县| 禄丰县| 鸡东县| 清水河县| 丹东市| 阳高县| 湘潭市| 舒兰市| 贵定县| 武清区| 博罗县| 图木舒克市| 塔河县| 亳州市| 泉州市| 宿州市| 陆河县| 信丰县| 咸丰县| 屏山县| 金阳县| 乐业县| 柞水县| 雷波县| 芦溪县| 蒙城县| 新竹市| 洛南县| 绥阳县| 天长市| 蓝田县| 砚山县| 江永县| 洛宁县| 无极县| 四平市| 福鼎市| 广河县| 渑池县| 兴文县|