找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[復(fù)制鏈接]
樓主: 與生
21#
發(fā)表于 2025-3-25 05:49:42 | 只看該作者
22#
發(fā)表于 2025-3-25 11:09:24 | 只看該作者
23#
發(fā)表于 2025-3-25 11:49:42 | 只看該作者
Overcrowding in mature destination images. Then, a landmark-based deep learning framework is presented for AD/MCI classification, by jointly performing feature extraction and classifier training. Experimental results on three public databases demonstrate that the proposed framework boosts the disease diagnosis performance, compared with several state-of-the-art sMRI-based methods.
24#
發(fā)表于 2025-3-25 19:52:15 | 只看該作者
25#
發(fā)表于 2025-3-26 00:01:39 | 只看該作者
26#
發(fā)表于 2025-3-26 00:46:46 | 只看該作者
Opacity Labeling of Diffuse Lung Diseases in CT Images Using Unsupervised and Semi-supervised Learniation for training classifiers. The performance evaluation is carried out by clustering or classification of six kinds of opacities of diffuse lung diseases in computed tomography (CT) images: consolidation, ground-glass opacity, honeycombing, emphysema, nodular and normal, and the effectiveness of the proposed methods is clarified.
27#
發(fā)表于 2025-3-26 05:46:06 | 只看該作者
Medical Image Classification Using Deep Learninging to classification of focal liver lesions on multi-phase CT images. The main challenge in deep-learning-based medical image classification is the lack of annotated training samples. We demonstrate that fine-tuning can significantly improve the accuracy of liver lesion classification, especially f
28#
發(fā)表于 2025-3-26 08:53:40 | 只看該作者
29#
發(fā)表于 2025-3-26 16:23:08 | 只看該作者
Deep Active Self-paced Learning for Biomedical Image Analysisrain it with the DASL strategy. Experimental results show that the proposed models trained with our DASL strategy perform much better than those trained without DASL using the same amount of annotated samples.
30#
發(fā)表于 2025-3-26 20:06:33 | 只看該作者
Deep Learning in Textural Medical Image Analysisined feature representations by an activation visualization method, and by measuring the frequency response of trained neural networks, in both qualitative and quantitative ways, respectively. These results demonstrate that such successive transfer learning enables networks to grasp both structural
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 14:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莎车县| 海城市| 余干县| 株洲县| 新巴尔虎左旗| 临泽县| 进贤县| 灵山县| 吉安县| 横峰县| 凤城市| 久治县| 同心县| 察隅县| 通海县| 菏泽市| 滕州市| 河间市| 巨鹿县| 凯里市| 海盐县| 万宁市| 绥棱县| 丰都县| 延寿县| 汕尾市| 兰西县| 淅川县| 溧阳市| 化州市| 星座| 枣庄市| 荆州市| 定州市| 阜城县| 象山县| 团风县| 柳江县| 昆明市| 大竹县| 海丰县|