找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復(fù)制鏈接]
樓主: 貪求
41#
發(fā)表于 2025-3-28 15:41:04 | 只看該作者
42#
發(fā)表于 2025-3-28 22:47:33 | 只看該作者
https://doi.org/10.1007/978-3-662-43839-8combined with other tools to remove artifacts or fill in occluded regions, allowing better understanding of the images from doctors or downstream algorithms. However, current methods that solve the problem usually pay no attention to the underlying pixel-intensity distributions in the missing input
43#
發(fā)表于 2025-3-29 02:59:51 | 只看該作者
David M. Lehmann,Viktor M. Saleniusons (classification), as biomedical images naturally contain image-wise labels in many scenarios. The current weakly supervised learning algorithms from the computer vision community are largely designed for focal objects (e.g., dogs and cats). However, such algorithms are not optimized for diffuse
44#
發(fā)表于 2025-3-29 03:30:03 | 只看該作者
45#
發(fā)表于 2025-3-29 07:15:25 | 只看該作者
Helena M. Müller,Melanie Reuter-Oppermannan open issue. This is especially true in medical imaging where GAN application is at its infancy, and where the use of scores based on models trained on datasets far away from the medical domain, e.g. the Inception score, can lead to misleading results. To overcome such limitations we propose a fra
46#
發(fā)表于 2025-3-29 14:31:30 | 只看該作者
47#
發(fā)表于 2025-3-29 17:58:01 | 只看該作者
https://doi.org/10.1007/978-3-031-61175-9is a complex minimally invasive procedure which is facing the problem of data availability and data privacy. Therefore, the simulation cases are widely used to form surgery training and planning. However, the cross-domain gap may affect the performance significantly as Deep Learning methods rely hea
48#
發(fā)表于 2025-3-29 21:14:48 | 只看該作者
49#
發(fā)表于 2025-3-30 01:30:29 | 只看該作者
50#
發(fā)表于 2025-3-30 05:14:19 | 只看該作者
Sandeep Purao,Arvind Karunakaranlems but it usually requires a large number of the annotated datasets for the training stage. In addition, traditional methods usually fail for the landmark detection of fine objects. In this paper, we tackle the issue of automatic landmark annotation in 3D volumetric images from a single example ba
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开鲁县| 介休市| 申扎县| 盖州市| 名山县| 织金县| 莱阳市| 柞水县| 临西县| 临湘市| 犍为县| 水富县| 射阳县| 柳林县| 车致| 定日县| 梁平县| 砀山县| 民丰县| 陆丰市| 富平县| 措美县| 即墨市| 丹凤县| 沙湾县| 安达市| 平昌县| 镇安县| 东乌珠穆沁旗| 泾源县| 新蔡县| 杂多县| 陇川县| 玛纳斯县| 始兴县| 北流市| 类乌齐县| 垣曲县| 集贤县| 瓮安县| 石屏县|