找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復制鏈接]
樓主: 貪求
21#
發(fā)表于 2025-3-25 05:03:03 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:32 | 只看該作者
Conditional Generation of Medical Images via Disentangled Adversarial Inferencee variables. We conduct extensive qualitative and quantitative assessments on two publicly available medical imaging datasets (LIDC and HAM10000) and test for conditional image generation and style-content disentanglement. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.
23#
發(fā)表于 2025-3-25 13:12:07 | 只看該作者
24#
發(fā)表于 2025-3-25 16:52:57 | 只看該作者
25#
發(fā)表于 2025-3-25 21:32:22 | 只看該作者
One-Shot Learning for Landmarks Detectionthm in order to perform automatic organ localization and landmark matching. We investigated both qualitatively and quantitatively the performance of the proposed approach on clinical temporal bone CT volumes. The results show that our one-shot learning scheme converges well and leads to a good accuracy of the landmark positions.
26#
發(fā)表于 2025-3-26 02:02:35 | 只看該作者
27#
發(fā)表于 2025-3-26 06:03:08 | 只看該作者
Conception of Design Science and its Methods latent space to generate images from a broader domain than what was observed. We show that using our generative approach for ultrasound data augmentation and domain adaptation during training improves the performance of the resulting deep learning models, even when tested within the observed domain.
28#
發(fā)表于 2025-3-26 12:20:38 | 只看該作者
Helena M. Müller,Melanie Reuter-Oppermanndel is trained to generate fake brain connectivity matrices, which are expected to reflect the latent distribution and topological features of the real brain network data. Numerical results show that the BrainNetGAN outperforms the benchmarking algorithms in augmenting the brain networks for AD classification tasks.
29#
發(fā)表于 2025-3-26 14:58:07 | 只看該作者
30#
發(fā)表于 2025-3-26 19:44:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
厦门市| 镇康县| 封开县| 安宁市| 齐齐哈尔市| 高州市| 夏津县| 凤冈县| 来凤县| 宁阳县| 嘉黎县| 辽阳县| 舞阳县| 诏安县| 温宿县| 绥化市| 长沙县| 隆德县| 永城市| 常熟市| 炉霍县| 永安市| 柳河县| 精河县| 巴塘县| 万安县| 张家界市| 内丘县| 湾仔区| 长武县| 深水埗区| 龙海市| 虹口区| 积石山| 内江市| 昆明市| 罗定市| 安庆市| 新竹县| 仁怀市| 永嘉县|