找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復(fù)制鏈接]
樓主: 貪求
11#
發(fā)表于 2025-3-23 11:01:53 | 只看該作者
Improved Heatmap-Based Landmark Detectionation of heart function. The location of the prosthesis’ sutures is critical. Obtaining and studying them during the procedure is a valuable learning experience for new surgeons. This paper proposes a landmark detection network for detecting sutures in endoscopic pictures, which solves the problem o
12#
發(fā)表于 2025-3-23 17:11:33 | 只看該作者
Cross-Domain Landmarks Detection in?Mitral Regurgitationis a complex minimally invasive procedure which is facing the problem of data availability and data privacy. Therefore, the simulation cases are widely used to form surgery training and planning. However, the cross-domain gap may affect the performance significantly as Deep Learning methods rely hea
13#
發(fā)表于 2025-3-23 19:56:40 | 只看該作者
14#
發(fā)表于 2025-3-23 22:57:25 | 只看該作者
Semi-supervised Surgical Tool Detection Based on Highly Confident Pseudo Labeling and Strong Augmentthods heavily rely on the volume of labeled data. However, manually annotating location of tools in surgical videos is quite time-consuming. To overcome this problem, we propose a semi-supervised pipeline for surgical tool detection, using strategies of highly confident pseudo labeling and strong au
15#
發(fā)表于 2025-3-24 06:11:08 | 只看該作者
One-Shot Learning for Landmarks Detectionlems but it usually requires a large number of the annotated datasets for the training stage. In addition, traditional methods usually fail for the landmark detection of fine objects. In this paper, we tackle the issue of automatic landmark annotation in 3D volumetric images from a single example ba
16#
發(fā)表于 2025-3-24 09:23:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:12:09 | 只看該作者
Ultrasound Variational Style Transfer to Generate Images Beyond the Observed Domain latent space to generate images from a broader domain than what was observed. We show that using our generative approach for ultrasound data augmentation and domain adaptation during training improves the performance of the resulting deep learning models, even when tested within the observed domain.
18#
發(fā)表于 2025-3-24 15:20:13 | 只看該作者
https://doi.org/10.1007/978-3-662-43839-8e variables. We conduct extensive qualitative and quantitative assessments on two publicly available medical imaging datasets (LIDC and HAM10000) and test for conditional image generation and style-content disentanglement. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.
19#
發(fā)表于 2025-3-24 21:28:04 | 只看該作者
20#
發(fā)表于 2025-3-25 02:20:25 | 只看該作者
https://doi.org/10.1007/978-3-662-43839-8y distributions within each masked region using a novel Variational Autoencoder (VAE) based hierarchical probabilistic network. Our approach then generates a diverse set of inpainted images, all of which appear visually appropriate.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰都县| 连云港市| 洪雅县| 绍兴县| 将乐县| 德兴市| 黔西县| 乌兰浩特市| 万盛区| 唐河县| 大悟县| 青铜峡市| 辽阳县| 崇阳县| 双鸭山市| 新疆| SHOW| 周至县| 柞水县| 洪湖市| 齐齐哈尔市| 云霄县| 济宁市| 昌乐县| 南郑县| 拉孜县| 龙海市| 赤壁市| 边坝县| 阿巴嘎旗| 威宁| 钟山县| 河东区| 上栗县| 双柏县| 尚志市| 长春市| 琼结县| 新竹市| 仙游县| 广安市|