找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復制鏈接]
查看: 30658|回復: 52
樓主
發(fā)表于 2025-3-21 19:44:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections
副標題First Workshop, DGM4
編輯Sandy Engelhardt,Ilkay Oksuz,Yuan Xue
視頻videohttp://file.papertrans.cn/265/264556/264556.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con
描述This book constitutes the refereed proceedings of the First MICCAI Workshop on Deep Generative Models, DG4MICCAI 2021,? and the First MICCAI Workshop on Data Augmentation, Labelling, and Imperfections, DALI 2021, held in conjunction with MICCAI 2021, in October 2021. The workshops were planned to take place in Strasbourg, France, but were held virtually due to the COVID-19 pandemic..DG4MICCAI 2021 accepted 12 papers from the 17 submissions received. The workshop focusses on recent algorithmic developments, new results, and?promising future directions in Deep Generative Models. Deep generative models?such as Generative Adversarial Network (GAN) and Variational Auto-Encoder?(VAE) are currently receiving widespread attention from not only the computer?vision and machine learning communities, but also in the MIC and CAI community..For DALI 2021, 15 papers from 32 submissions were accepted for publication. They focus on rigorousstudy of medical data related to machine learning systems.?. .?.
出版日期Conference proceedings 2021
關鍵詞artificial intelligence; bioinformatics; color image processing; computer vision; deep learning; image pr
版次1
doihttps://doi.org/10.1007/978-3-030-88210-5
isbn_softcover978-3-030-88209-9
isbn_ebook978-3-030-88210-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections影響因子(影響力)




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections影響因子(影響力)學科排名




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections網(wǎng)絡公開度




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections網(wǎng)絡公開度學科排名




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections被引頻次




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections被引頻次學科排名




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections年度引用




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections年度引用學科排名




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections讀者反饋




書目名稱Deep Generative Models, and Data Augmentation, Labelling, and Imperfections讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:29:34 | 只看該作者
Ultrasound Variational Style Transfer to Generate Images Beyond the Observed Domainent imaging settings. We address these problems using a novel variational style-transfer neural network that can sample various styles from a computed latent space to generate images from a broader domain than what was observed. We show that using our generative approach for ultrasound data augmenta
板凳
發(fā)表于 2025-3-22 02:26:11 | 只看該作者
地板
發(fā)表于 2025-3-22 08:07:07 | 只看該作者
5#
發(fā)表于 2025-3-22 08:45:23 | 只看該作者
Conditional Generation of Medical Images via Disentangled Adversarial Inferencentations of style and content, and use this information to impose control over conditional generation process. We undergo two novel regularization steps to ensure content-style disentanglement. First, we minimize the shared information between content and style by introducing a novel application of
6#
發(fā)表于 2025-3-22 15:03:17 | 只看該作者
CT-SGAN: Computed Tomography Synthesis GAN the CT-SGAN model that generates large-scale 3D synthetic CT-scan volumes (.) when trained on a small dataset of chest CT-scans. CT-SGAN offers an attractive solution to two major challenges facing machine learning in medical imaging: a small number of given i.i.d. training data, and the restrictio
7#
發(fā)表于 2025-3-22 18:47:08 | 只看該作者
8#
發(fā)表于 2025-3-22 23:10:31 | 只看該作者
CaCL: Class-Aware Codebook Learning for Weakly Supervised Segmentation on Diffuse Image Patternsons (classification), as biomedical images naturally contain image-wise labels in many scenarios. The current weakly supervised learning algorithms from the computer vision community are largely designed for focal objects (e.g., dogs and cats). However, such algorithms are not optimized for diffuse
9#
發(fā)表于 2025-3-23 02:16:26 | 只看該作者
BrainNetGAN: Data Augmentation of Brain Connectivity Using Generative Adversarial Network for Dement remains a challenge to identify the individuals at risk of dementia for precise management. Brain MRI offers a non-invasive biomarker to detect brain aging. Previous evidence shows that the structural brain network generated from the diffusion MRI promises to classify dementia accurately based on d
10#
發(fā)表于 2025-3-23 08:04:15 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
虹口区| 新余市| 汤阴县| 湟源县| 石嘴山市| 云阳县| 读书| 吉水县| 天等县| 米林县| 屏边| 黑龙江省| 宁化县| 汕头市| 马山县| 收藏| 乌恰县| 新津县| 安丘市| 建宁县| 阳高县| 阿克苏市| 西乡县| 喜德县| 丰宁| 东安县| 鸡东县| 巫山县| 公主岭市| 琼海市| 汽车| 崇仁县| 天峨县| 台东县| 阜宁县| 旌德县| 米易县| 华坪县| 且末县| 岳普湖县| 沧州市|