找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
41#
發(fā)表于 2025-3-28 15:26:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:21:15 | 只看該作者
43#
發(fā)表于 2025-3-29 01:40:32 | 只看該作者
44#
發(fā)表于 2025-3-29 06:42:45 | 只看該作者
An Optimization Problems with a Composite Objective Function,rors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
45#
發(fā)表于 2025-3-29 10:51:01 | 只看該作者
A Zero-Sum Game with Two Players,e computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
46#
發(fā)表于 2025-3-29 14:49:53 | 只看該作者
47#
發(fā)表于 2025-3-29 17:07:50 | 只看該作者
Continuous Subgradient Method, that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two calculations of our algorithm, we find out what approximate solution can be obtained and how much time one needs for this.
48#
發(fā)表于 2025-3-29 22:49:42 | 只看該作者
49#
發(fā)表于 2025-3-30 01:13:19 | 只看該作者
Safety and Epistemic Frankfurt Cases, step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error. In general, these two computational errors are different.
50#
發(fā)表于 2025-3-30 06:55:40 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1m generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姜堰市| 桐乡市| 遂溪县| 崇州市| 琼海市| 孝感市| 英山县| 七台河市| 马鞍山市| 布拖县| 新邵县| 栖霞市| 营口市| 沁源县| 宁德市| 娱乐| 绥化市| 南郑县| 宁明县| 丰原市| 焦作市| 岢岚县| 商水县| 白河县| 宁都县| 铜川市| 青浦区| 连山| 偏关县| 亳州市| 茂名市| 若尔盖县| 双城市| 洛阳市| 泽库县| 西城区| 宿州市| 鄂托克旗| 竹山县| 高要市| 博乐市|