找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
41#
發(fā)表于 2025-3-28 15:26:03 | 只看該作者
42#
發(fā)表于 2025-3-28 22:21:15 | 只看該作者
43#
發(fā)表于 2025-3-29 01:40:32 | 只看該作者
44#
發(fā)表于 2025-3-29 06:42:45 | 只看該作者
An Optimization Problems with a Composite Objective Function,rors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
45#
發(fā)表于 2025-3-29 10:51:01 | 只看該作者
A Zero-Sum Game with Two Players,e computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
46#
發(fā)表于 2025-3-29 14:49:53 | 只看該作者
47#
發(fā)表于 2025-3-29 17:07:50 | 只看該作者
Continuous Subgradient Method, that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two calculations of our algorithm, we find out what approximate solution can be obtained and how much time one needs for this.
48#
發(fā)表于 2025-3-29 22:49:42 | 只看該作者
49#
發(fā)表于 2025-3-30 01:13:19 | 只看該作者
Safety and Epistemic Frankfurt Cases, step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error. In general, these two computational errors are different.
50#
發(fā)表于 2025-3-30 06:55:40 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1m generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞安市| 稻城县| 彰化市| 辽宁省| 镇巴县| 准格尔旗| 泰宁县| 南通市| 祁东县| 桂平市| 松原市| 屯留县| 拉萨市| 天水市| 凉城县| 广东省| 从江县| 顺昌县| 九台市| 新民市| 班戈县| 普兰县| 凭祥市| 页游| 上思县| 巨鹿县| 梁山县| 樟树市| 巧家县| 宁晋县| 菏泽市| 会东县| 博乐市| 峨山| 肥西县| 商水县| 稻城县| 安阳市| 乌兰浩特市| 格尔木市| 塘沽区|