找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
11#
發(fā)表于 2025-3-23 11:15:32 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1this class of problems, an objective function is assumed to be convex but a set of admissible points is not necessarily convex. Our goal is to obtain an .-approximate solution in the presence of computational errors, where . is a given positive number.
12#
發(fā)表于 2025-3-23 16:22:02 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:44 | 只看該作者
Springer Optimization and Its Applicationshttp://image.papertrans.cn/c/image/237847.jpg
14#
發(fā)表于 2025-3-23 22:30:23 | 只看該作者
https://doi.org/10.1007/978-94-007-5934-3In this chapter we analyze the mirror descent algorithm for minimization of convex and nonsmooth functions and for computing the saddle points of convex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points.
15#
發(fā)表于 2025-3-24 02:28:44 | 只看該作者
16#
發(fā)表于 2025-3-24 08:20:43 | 只看該作者
17#
發(fā)表于 2025-3-24 10:43:14 | 只看該作者
18#
發(fā)表于 2025-3-24 18:20:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:56:29 | 只看該作者
Minimization of Sharp Weakly Convex Functions,In this chapter we study the subgradient projection algorithm for minimization of sharp weakly convex functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points.
20#
發(fā)表于 2025-3-25 02:13:40 | 只看該作者
https://doi.org/10.1007/978-3-030-37822-6convex optimization; mathematical programming; computational error; nonlinear analysis; solving real-wor
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
托克托县| 曲麻莱县| 镇赉县| 龙里县| 平定县| 剑川县| 新河县| 五寨县| 五家渠市| 宁津县| 高密市| 九台市| 南川市| 泸水县| 红原县| 永善县| 元谋县| 肥东县| 营山县| 通许县| 桓台县| 东至县| 泉州市| 靖宇县| 锡林郭勒盟| 南皮县| 河津市| 中西区| 麦盖提县| 道孚县| 固安县| 潍坊市| 景泰县| 玉树县| 南澳县| 军事| 枞阳县| 城口县| 白玉县| 怀来县| 麻城市|