找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
31#
發(fā)表于 2025-3-26 21:15:43 | 只看該作者
32#
發(fā)表于 2025-3-27 03:49:00 | 只看該作者
33#
發(fā)表于 2025-3-27 07:14:39 | 只看該作者
1931-6828 nerally, different. This fact, which was not taken into account in the previous book, is indeed important in practice. For example, the subgradient projection algorithm consists of two steps. The first step is 978-3-030-37824-0978-3-030-37822-6Series ISSN 1931-6828 Series E-ISSN 1931-6836
34#
發(fā)表于 2025-3-27 09:56:24 | 只看該作者
35#
發(fā)表于 2025-3-27 14:25:06 | 只看該作者
Subgradient Projection Algorithm,all positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
36#
發(fā)表于 2025-3-27 19:50:35 | 只看該作者
37#
發(fā)表于 2025-3-28 01:26:31 | 只看該作者
38#
發(fā)表于 2025-3-28 02:53:24 | 只看該作者
Minimization of Quasiconvex Functions,l errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
39#
發(fā)表于 2025-3-28 10:09:53 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4t for every algorithm its iteration consists of several steps and that computational errors for different steps are different, in general. In this chapter we discuss several algorithms which are studied in this book.
40#
發(fā)表于 2025-3-28 13:10:56 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1rors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we find out what approximate solution can be obtained and how many iterates one needs for this.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
咸阳市| 麦盖提县| 阿瓦提县| 徐汇区| 合山市| 东兴市| 永修县| 霍山县| 铜陵市| 贺州市| 苍南县| 福清市| 滁州市| 阿尔山市| 长兴县| 镇巴县| 漾濞| 青海省| 新蔡县| 盐池县| 昭觉县| 万载县| 乌鲁木齐县| 新龙县| 宁津县| 门头沟区| 苍溪县| 博兴县| 铁岭市| 台江县| 绥中县| 武汉市| 通江县| 日土县| 新余市| 大丰市| 乌苏市| 青冈县| 克山县| 象山县| 抚远县|