找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Convex Optimization with Computational Errors; Alexander J. Zaslavski Book 2020 Springer Nature Switzerland AG 2020 convex optimization.ma

[復(fù)制鏈接]
樓主: Fixate
21#
發(fā)表于 2025-3-25 05:18:57 | 只看該作者
22#
發(fā)表于 2025-3-25 08:47:19 | 只看該作者
A Projected Subgradient Method for Nonsmooth Problems,this class of problems, an objective function is assumed to be convex but a set of admissible points is not necessarily convex. Our goal is to obtain an .-approximate solution in the presence of computational errors, where . is a given positive number.
23#
發(fā)表于 2025-3-25 14:54:30 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4mate solution of the problem in the presence of computational errors. It is known that the algorithm generates a good approximate solution, if the sequence of computational errors is bounded from above by a small constant. In our study, presented in this book, we take into consideration the fact tha
24#
發(fā)表于 2025-3-25 16:30:54 | 只看該作者
https://doi.org/10.1007/978-3-663-07526-4f convex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step is a calculation of a subgradient of the objective function while in the sec
25#
發(fā)表于 2025-3-25 20:04:59 | 只看該作者
Safety and Epistemic Frankfurt Cases,rs. The problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step is a calculation of a gradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these
26#
發(fā)表于 2025-3-26 00:10:30 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1nvex–concave functions, under the presence of computational errors. The problem is described by an objective function and a set of feasible points. For this algorithm we need a calculation of a subgradient of the objective function and a calculation of a projection on the feasible set. In each of th
27#
發(fā)表于 2025-3-26 05:28:47 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:18 | 只看該作者
29#
發(fā)表于 2025-3-26 14:59:22 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:29 | 只看該作者
https://doi.org/10.1007/978-3-030-67572-1r. In general, these two computational errors are different. We show that our algorithm generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if we know the computational errors for the two steps of our algorithm, we fin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓝田县| 额济纳旗| 通榆县| 十堰市| 从江县| 漳州市| 三明市| 磐石市| 馆陶县| 浦江县| 冕宁县| 浙江省| 阳朔县| 会宁县| 饶平县| 称多县| 江都市| 始兴县| 德昌县| 梅州市| 云龙县| 措勤县| 托里县| 临漳县| 广宗县| 绥芬河市| 晋宁县| 彭阳县| 四平市| 曲沃县| 东光县| 恭城| 彩票| 贡山| 广汉市| 德保县| 东平县| 灯塔市| 仪征市| 金昌市| 德化县|