找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell

[復(fù)制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 12:56:12 | 只看該作者
E. Broszeit,G. Kienel,B. Matthesr. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
12#
發(fā)表于 2025-3-23 17:26:27 | 只看該作者
13#
發(fā)表于 2025-3-23 19:14:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:55 | 只看該作者
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole s
15#
發(fā)表于 2025-3-24 05:41:22 | 只看該作者
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
16#
發(fā)表于 2025-3-24 08:53:06 | 只看該作者
https://doi.org/10.1007/978-3-642-58504-3e and multiplicity of positive solutions for a class of second-order ordinary differential equations with multiparameters. We apply our results to semilinear elliptic equations in bounded annular domains with non-homogeneous Dirichlet boundary conditions. More precisely, we apply our main results to
17#
發(fā)表于 2025-3-24 13:38:50 | 只看該作者
https://doi.org/10.1007/978-3-642-58504-3cations to bifurcation analysis. Then we turn to the study of critical exponents for positive solutions, reviewing some results for general solutions and for radially symmetric solutions. Then, some consequences for the existence of solutions for some semilinear equations are obtained. We finally in
18#
發(fā)表于 2025-3-24 16:47:18 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:26 | 只看該作者
E. Broszeit,G. Kienel,B. Matthesr. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
20#
發(fā)表于 2025-3-25 00:38:26 | 只看該作者
Verdampfung, Kristallisation, TrocknungMore precisely, for all 0<.<., we consider the set . .(.) of limit points in . as . → ∞ of .. In particular we show that, given an arbitrary countable set . ? (0,.), there exists . such that . whenever . ∈ ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
榆中县| 英吉沙县| 通山县| 麻江县| 喀喇| 千阳县| 明水县| 南皮县| 雷波县| 芜湖县| 长泰县| 蕉岭县| 南木林县| 苗栗市| 铜山县| 利津县| 张家界市| 凤台县| 卓尼县| 兴文县| 临洮县| 鱼台县| 华容县| 保康县| 五莲县| 牙克石市| 临洮县| 无锡市| 德兴市| 霍邱县| 东至县| 东光县| 临邑县| 饶平县| 寿光市| 泾川县| 孝义市| 德惠市| 金昌市| 视频| 错那县|