找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell

[復(fù)制鏈接]
樓主: 代表
21#
發(fā)表于 2025-3-25 05:51:26 | 只看該作者
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
22#
發(fā)表于 2025-3-25 11:27:24 | 只看該作者
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
23#
發(fā)表于 2025-3-25 14:12:18 | 只看該作者
24#
發(fā)表于 2025-3-25 17:12:07 | 只看該作者
Symmetry of Solutions of a Semilinear Elliptic Problem in an Annulus,r. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
25#
發(fā)表于 2025-3-25 20:21:33 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:16 | 只看該作者
On a Class of Critical Elliptic Equations of Caffarelli-Kohn-Nirenberg Type,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
27#
發(fā)表于 2025-3-26 05:11:11 | 只看該作者
28#
發(fā)表于 2025-3-26 10:29:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:44 | 只看該作者
30#
發(fā)表于 2025-3-26 16:51:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
获嘉县| 花垣县| 余姚市| 垫江县| 商南县| 华蓥市| 元江| 云安县| 乌兰县| 侯马市| 金溪县| 屏南县| 广昌县| 高邑县| 延庆县| 栾城县| 时尚| 秦安县| 甘谷县| 全椒县| 松江区| 湟中县| 八宿县| 龙海市| 读书| 建德市| 日土县| 安仁县| 浮梁县| 黄平县| 洮南市| 宁陕县| 衡阳市| 新竹市| 清河县| 醴陵市| 顺义区| 泸水县| 额尔古纳市| 湖州市| 得荣县|