找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell

[復(fù)制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 12:56:12 | 只看該作者
E. Broszeit,G. Kienel,B. Matthesr. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
12#
發(fā)表于 2025-3-23 17:26:27 | 只看該作者
13#
發(fā)表于 2025-3-23 19:14:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:55 | 只看該作者
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole s
15#
發(fā)表于 2025-3-24 05:41:22 | 只看該作者
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
16#
發(fā)表于 2025-3-24 08:53:06 | 只看該作者
https://doi.org/10.1007/978-3-642-58504-3e and multiplicity of positive solutions for a class of second-order ordinary differential equations with multiparameters. We apply our results to semilinear elliptic equations in bounded annular domains with non-homogeneous Dirichlet boundary conditions. More precisely, we apply our main results to
17#
發(fā)表于 2025-3-24 13:38:50 | 只看該作者
https://doi.org/10.1007/978-3-642-58504-3cations to bifurcation analysis. Then we turn to the study of critical exponents for positive solutions, reviewing some results for general solutions and for radially symmetric solutions. Then, some consequences for the existence of solutions for some semilinear equations are obtained. We finally in
18#
發(fā)表于 2025-3-24 16:47:18 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:26 | 只看該作者
E. Broszeit,G. Kienel,B. Matthesr. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
20#
發(fā)表于 2025-3-25 00:38:26 | 只看該作者
Verdampfung, Kristallisation, TrocknungMore precisely, for all 0<.<., we consider the set . .(.) of limit points in . as . → ∞ of .. In particular we show that, given an arbitrary countable set . ? (0,.), there exists . such that . whenever . ∈ ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
日喀则市| 曲阳县| 公安县| 蕲春县| 张北县| 蓬溪县| 江津市| 苗栗县| 嘉定区| 临邑县| 闻喜县| 城口县| 吴江市| 察雅县| 顺昌县| 安国市| 彭泽县| 隆子县| 连江县| 瓮安县| 原阳县| 宝鸡市| 宜都市| 宁南县| 上虞市| 吴忠市| 菏泽市| 肇庆市| 民勤县| 香港 | 布拖县| 嘉荫县| 南郑县| 阿拉善盟| 大埔县| 湖南省| 会泽县| 三明市| 双城市| 仙居县| 牙克石市|