找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell

[復(fù)制鏈接]
樓主: 代表
11#
發(fā)表于 2025-3-23 12:56:12 | 只看該作者
E. Broszeit,G. Kienel,B. Matthesr. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
12#
發(fā)表于 2025-3-23 17:26:27 | 只看該作者
13#
發(fā)表于 2025-3-23 19:14:42 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:55 | 只看該作者
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole s
15#
發(fā)表于 2025-3-24 05:41:22 | 只看該作者
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
16#
發(fā)表于 2025-3-24 08:53:06 | 只看該作者
https://doi.org/10.1007/978-3-642-58504-3e and multiplicity of positive solutions for a class of second-order ordinary differential equations with multiparameters. We apply our results to semilinear elliptic equations in bounded annular domains with non-homogeneous Dirichlet boundary conditions. More precisely, we apply our main results to
17#
發(fā)表于 2025-3-24 13:38:50 | 只看該作者
https://doi.org/10.1007/978-3-642-58504-3cations to bifurcation analysis. Then we turn to the study of critical exponents for positive solutions, reviewing some results for general solutions and for radially symmetric solutions. Then, some consequences for the existence of solutions for some semilinear equations are obtained. We finally in
18#
發(fā)表于 2025-3-24 16:47:18 | 只看該作者
19#
發(fā)表于 2025-3-24 21:48:26 | 只看該作者
E. Broszeit,G. Kienel,B. Matthesr. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
20#
發(fā)表于 2025-3-25 00:38:26 | 只看該作者
Verdampfung, Kristallisation, TrocknungMore precisely, for all 0<.<., we consider the set . .(.) of limit points in . as . → ∞ of .. In particular we show that, given an arbitrary countable set . ? (0,.), there exists . such that . whenever . ∈ ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伽师县| 潜山县| 通山县| 兰考县| 尚志市| 广河县| 巴林右旗| 彝良县| 广州市| 灵宝市| 和政县| 共和县| 新竹县| 沙雅县| 巴青县| 淳化县| 营山县| 亚东县| 通江县| 乐昌市| 张家港市| 嘉义县| 鱼台县| 沂源县| 上虞市| 山西省| 高州市| 山丹县| 庐江县| 桃园市| 修水县| 手机| 周口市| 高雄市| 贡山| 彰武县| 漯河市| 夏津县| 泰州市| 仙桃市| 厦门市|