找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell

[復(fù)制鏈接]
查看: 33844|回復(fù): 60
樓主
發(fā)表于 2025-3-21 16:35:22 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Contributions to Nonlinear Analysis
副標(biāo)題A Tribute to D.G. de
編輯Thierry Cazenave,David Costa,Carlos Tomei
視頻videohttp://file.papertrans.cn/238/237196/237196.mp4
概述State of the art in the fields of nonlinear analysis and nonlinear differential equations.A tribute to the distinguished mathematician D.G. de Figueiredo.Includes supplementary material:
叢書名稱Progress in Nonlinear Differential Equations and Their Applications
圖書封面Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell
描述This paper is concerned with the existence and uniform decay rates of solutions of the waveequation with a sourceterm and subject to nonlinear boundary damping ? ? u ?? u =|u| u in ? ×(0,+?) ? tt ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 1) ? ? u+g(u)=0 on ? ×(0,+?) ? t 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t n where ? is a bounded domain of R ,n? 1, with a smooth boundary ? = ? ?? . 0 1 Here, ? and ? are closed and disjoint and ? represents the unit outward normal 0 1 to ?. Problems like (1. 1), more precisely, ? u ?? u =?f (u)in? ×(0,+?) ? tt 0 ? ? ? ? u=0 on ? ×(0,+?) 0 (1. 2) ? ? u =?g(u )?f (u)on? ×(0,+?) ? t 1 1 ? ? ? ? 0 1 u(x,0) = u (x); u (x,0) = u (x),x? ? , t were widely studied in the literature, mainly when f =0,see[6,13,22]anda 1 long list of references therein. When f =0and f = 0 this kind of problem was 0 1 well studied by Lasiecka and Tataru [15] for a very general model of nonlinear functions f (s),i=0,1, but assuming that f (s)s? 0, that is, f represents, for i i i each i, an attractive force.
出版日期Book 2006
關(guān)鍵詞Maxwell‘s equations; Nonlinear equations; Partial differential equations; calculus; hyperbolic equation;
版次1
doihttps://doi.org/10.1007/3-7643-7401-2
isbn_ebook978-3-7643-7401-3Series ISSN 1421-1750 Series E-ISSN 2374-0280
issn_series 1421-1750
copyrightBirkh?user Basel 2006
The information of publication is updating

書目名稱Contributions to Nonlinear Analysis影響因子(影響力)




書目名稱Contributions to Nonlinear Analysis影響因子(影響力)學(xué)科排名




書目名稱Contributions to Nonlinear Analysis網(wǎng)絡(luò)公開度




書目名稱Contributions to Nonlinear Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Contributions to Nonlinear Analysis被引頻次




書目名稱Contributions to Nonlinear Analysis被引頻次學(xué)科排名




書目名稱Contributions to Nonlinear Analysis年度引用




書目名稱Contributions to Nonlinear Analysis年度引用學(xué)科排名




書目名稱Contributions to Nonlinear Analysis讀者反饋




書目名稱Contributions to Nonlinear Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:03:39 | 只看該作者
,Dünne Schichten in der Displaytechnik,the authors Cavalcanti, Domingos Cavalcanti and Martinez [.] and complements the work of Vitillaro [.]. It is important to mention that in [.] no decay result is proved and the dissipative term on the boundary is of a preassigned polynomial growth at the origin.
板凳
發(fā)表于 2025-3-22 04:15:53 | 只看該作者
地板
發(fā)表于 2025-3-22 07:27:47 | 只看該作者
5#
發(fā)表于 2025-3-22 12:05:18 | 只看該作者
6#
發(fā)表于 2025-3-22 14:17:55 | 只看該作者
Multiparameter Elliptic Equations in Annular Domains,ilinear elliptic equations in bounded annular domains with non-homogeneous Dirichlet boundary conditions. More precisely, we apply our main results to equations of the form ., where . and . are non-negative parameters. One feature of the hypotheses on the nonlinearities that we consider is that they have some sort of local character.
7#
發(fā)表于 2025-3-22 20:10:08 | 只看該作者
8#
發(fā)表于 2025-3-22 21:54:03 | 只看該作者
https://doi.org/10.1007/978-3-642-58008-6 a unique continuation question. In [.] the case where the damping is linear was solved. In this article we address the general case and obtain explicit rates of decay that depend on the growth of the dissipative term near zero and infinity.
9#
發(fā)表于 2025-3-23 04:33:00 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:25 | 只看該作者
https://doi.org/10.1007/978-3-642-58008-6localized damping term. Following the methods in [.], which combines energy estimates, multipliers and compactness arguments the problem is reduced to a unique continuation question. In [.] the case where the damping is linear was solved. In this article we address the general case and obtain explic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
纳雍县| 崇阳县| 孟州市| 舟曲县| 张家港市| 石城县| 仲巴县| 拜城县| 北宁市| 大关县| 谢通门县| 沙田区| 安平县| 营口市| 青海省| 灵山县| 大石桥市| 宁化县| 沁水县| 营口市| 蒲城县| 临沭县| 南通市| 平罗县| 汕尾市| 富裕县| 阿拉尔市| 玉门市| 宣汉县| 建宁县| 澄江县| 抚松县| 丘北县| 呼伦贝尔市| 成武县| 礼泉县| 娱乐| 吐鲁番市| 阿鲁科尔沁旗| 玉溪市| 西畴县|