找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Contributions to Nonlinear Analysis; A Tribute to D.G. de Thierry Cazenave,David Costa,Carlos Tomei Book 2006 Birkh?user Basel 2006 Maxwell

[復(fù)制鏈接]
樓主: 代表
21#
發(fā)表于 2025-3-25 05:51:26 | 只看該作者
Verbraucherschutz und Kreditrecht,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
22#
發(fā)表于 2025-3-25 11:27:24 | 只看該作者
Verbraucherschutz und Kreditrecht,pty and has finite measure for some .>0. In particular, we show that if . .(0) has nonempty interior, then the number of solutions increases with .. We also study concentration of solutions on the set . .(0) as .→∞.
23#
發(fā)表于 2025-3-25 14:12:18 | 只看該作者
24#
發(fā)表于 2025-3-25 17:12:07 | 只看該作者
Symmetry of Solutions of a Semilinear Elliptic Problem in an Annulus,r. We prove that solutions of (.) which concentrate at k points, 3 ≤ k ≤ ., have these points all lying in the same (k-1)-dimensional hyperplane Π. passing through the origin and are symmetric with respect to any (N-1)-dimensional hyperplane containing Π..
25#
發(fā)表于 2025-3-25 20:21:33 | 只看該作者
26#
發(fā)表于 2025-3-26 02:39:16 | 只看該作者
On a Class of Critical Elliptic Equations of Caffarelli-Kohn-Nirenberg Type,igin, ., . and . is a non negative measurable function with critical growth. By using a variant of the concentration compactness principle of P.L. Lions together with standard arguments by Brezis and Nirenberg, we obtain some existence and nonexistence results when Ω is a bounded domain, the whole space . or an infinite cylinder.
27#
發(fā)表于 2025-3-26 05:11:11 | 只看該作者
28#
發(fā)表于 2025-3-26 10:29:01 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:44 | 只看該作者
30#
發(fā)表于 2025-3-26 16:51:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛坪县| 台东县| 格尔木市| 安顺市| 阿鲁科尔沁旗| 兰考县| 遂川县| 霍山县| 肥西县| 噶尔县| 聊城市| 肇东市| 河南省| 维西| 政和县| 北京市| 大方县| 许昌县| 宁夏| 大余县| 城步| 山东省| 都兰县| 保康县| 丘北县| 白城市| 建始县| 遂昌县| 开封县| 调兵山市| 蓬安县| 巴彦淖尔市| 中卫市| 克东县| 宝坻区| 桓台县| 山西省| 抚顺县| 三明市| 兖州市| 涡阳县|