找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration and Gaussian Approximation for Randomized Sums; Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze Book 2023 The Editor(s) (i

[復(fù)制鏈接]
樓主: Lactase
21#
發(fā)表于 2025-3-25 04:59:01 | 只看該作者
22#
發(fā)表于 2025-3-25 08:37:22 | 只看該作者
https://doi.org/10.1007/978-1-4939-2602-2The aim is in particular to quantify the asymptotic normality of these distributions and to include dimensional refinements of such approximation in analogy with Edgeworth expansions (which however we consider up to order 2).
23#
發(fā)表于 2025-3-25 13:29:50 | 只看該作者
24#
發(fā)表于 2025-3-25 17:58:17 | 只看該作者
Time-Series Prediction and ApplicationsIn order to study deviations of the distribution functions . from the typical distribution . by means of the Kolmogorov distance, Berry–Esseen-type inequalities, which we discussed in Chapter 3, will be used. To this end we need to focus first on the behavior of characteristic functions of ..
25#
發(fā)表于 2025-3-25 20:04:11 | 只看該作者
Amit Konar,Diptendu BhattacharyaIn order to deal with the main Problem 12.1.2, we start with the Kantorovich distance for bounding possible fluctuations of . around . on average.
26#
發(fā)表于 2025-3-26 01:17:44 | 只看該作者
Moments and Correlation ConditionsThis definition is frequently used in Convex Geometry, especially for random vectors which are uniformly distributed over a convex body (in which case the body is called isotropic, cf. [144]).
27#
發(fā)表于 2025-3-26 05:05:27 | 只看該作者
Standard Analytic ConditionsIn some problems/Sobolev-type inequalities, it makes sense to slightly modify the notion of the generalized modulus of gradient.
28#
發(fā)表于 2025-3-26 10:05:53 | 只看該作者
29#
發(fā)表于 2025-3-26 14:46:41 | 只看該作者
Sobolev-type InequalitiesAccording to the general equation (5.4), and since the geodesic and Euclidean distances are infinitesimally equivalent, the second order modulus of the gradient for functions . on the unit sphere is defined by
30#
發(fā)表于 2025-3-26 18:49:21 | 只看該作者
Linear Functionals on the SphereThe aim is in particular to quantify the asymptotic normality of these distributions and to include dimensional refinements of such approximation in analogy with Edgeworth expansions (which however we consider up to order 2).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长垣县| 醴陵市| 沅陵县| 辰溪县| 麻栗坡县| 南投市| 庆云县| 承德市| 邛崃市| 封开县| 梁山县| 阜新市| 内丘县| 广宗县| 噶尔县| 辰溪县| 固安县| 沙坪坝区| 弋阳县| 蒙城县| 伊通| 天峨县| 滨海县| 玛纳斯县| 色达县| 石景山区| 崇州市| 安西县| 林州市| 红河县| 沧州市| 漠河县| 天峨县| 阳朔县| 安岳县| 湘乡市| 咸宁市| 青海省| 兴义市| 拉孜县| 巫山县|