找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration and Gaussian Approximation for Randomized Sums; Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze Book 2023 The Editor(s) (i

[復(fù)制鏈接]
查看: 17110|回復(fù): 56
樓主
發(fā)表于 2025-3-21 19:22:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Concentration and Gaussian Approximation for Randomized Sums
編輯Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze
視頻videohttp://file.papertrans.cn/235/234856/234856.mp4
概述Self-contained book on extensions of Sudakov‘s theorem.Discusses weighted sums of random variables and the concentration of their distributions around Gaussian laws.Contains a detailed exposition of t
叢書名稱Probability Theory and Stochastic Modelling
圖書封面Titlebook: Concentration and Gaussian Approximation for Randomized Sums;  Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze Book 2023 The Editor(s) (i
描述.This book describes extensions of Sudakov‘s classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration of Lipschitz functions around their limiting mean, the authors proceed to derive concentration around limiting affine or polynomial functions, aiming towards a theory of higher order concentration based on functional inequalities of log-Sobolev and Poincaré type. These results make it possible to derive concentration of higher order for weighted sums of classes of dependent variables..While the first part of the book discusses the basic notions and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.
出版日期Book 2023
關(guān)鍵詞Khinchin-type inequalities; log-Sobolev-type inequalities; Concentration inequalities; Berry-Esseen-typ
版次1
doihttps://doi.org/10.1007/978-3-031-31149-9
isbn_softcover978-3-031-31151-2
isbn_ebook978-3-031-31149-9Series ISSN 2199-3130 Series E-ISSN 2199-3149
issn_series 2199-3130
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Concentration and Gaussian Approximation for Randomized Sums影響因子(影響力)




書目名稱Concentration and Gaussian Approximation for Randomized Sums影響因子(影響力)學(xué)科排名




書目名稱Concentration and Gaussian Approximation for Randomized Sums網(wǎng)絡(luò)公開度




書目名稱Concentration and Gaussian Approximation for Randomized Sums網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Concentration and Gaussian Approximation for Randomized Sums被引頻次




書目名稱Concentration and Gaussian Approximation for Randomized Sums被引頻次學(xué)科排名




書目名稱Concentration and Gaussian Approximation for Randomized Sums年度引用




書目名稱Concentration and Gaussian Approximation for Randomized Sums年度引用學(xué)科排名




書目名稱Concentration and Gaussian Approximation for Randomized Sums讀者反饋




書目名稱Concentration and Gaussian Approximation for Randomized Sums讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:14:31 | 只看該作者
Book 2023and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.
板凳
發(fā)表于 2025-3-22 02:37:42 | 只看該作者
地板
發(fā)表于 2025-3-22 06:02:52 | 只看該作者
5#
發(fā)表于 2025-3-22 10:23:53 | 只看該作者
Book 2023es. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration
6#
發(fā)表于 2025-3-22 15:06:57 | 只看該作者
7#
發(fā)表于 2025-3-22 19:01:40 | 只看該作者
Logarithmic Sobolev Inequalitiesies of the involved entropy functional and then describe several important examples of measures satisfying logarithmic Sobolev inequalities. The remaining part of the chapter deals with various bounds that are valid in the presence of logarithmic Sobolev inequalities.
8#
發(fā)表于 2025-3-23 00:55:25 | 只看該作者
Slow coherency and weak connections, chapter, we describe general tools in the form of smoothing and Berry–Esseen-type inequalities, which allow one to perform the transition from the results about closeness or smallness of Fourier–Stieltjes transforms to corresponding results about the associated functions of bounded variation.
9#
發(fā)表于 2025-3-23 02:49:41 | 只看該作者
2199-3130 ons around Gaussian laws.Contains a detailed exposition of t.This book describes extensions of Sudakov‘s classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentra
10#
發(fā)表于 2025-3-23 06:23:19 | 只看該作者
Slow coherency and weak connections,ll” probabilities), for joint distributions of pairwise independent random variables, and for coordinate-symmetric distributions. We also discuss the class of logarithmically concave measures and include some additional background material which will be needed later on.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武汉市| 邛崃市| 柘荣县| 吴桥县| 武强县| 利辛县| 肇州县| 湘乡市| 榕江县| 临猗县| 通州市| 凤冈县| 华坪县| 黔西| 黑龙江省| 保定市| 房山区| 贡嘎县| 三亚市| 桂阳县| 青阳县| 健康| 万山特区| 顺义区| 随州市| 平山县| 鲁山县| 太保市| 宁阳县| 会宁县| 长沙县| 渭源县| 丽水市| 台南县| 乌兰察布市| 梧州市| 康马县| 宁夏| 申扎县| 平湖市| 揭东县|