找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration and Gaussian Approximation for Randomized Sums; Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze Book 2023 The Editor(s) (i

[復(fù)制鏈接]
樓主: Lactase
11#
發(fā)表于 2025-3-23 11:05:37 | 只看該作者
Coherency and area identification,ies of the involved entropy functional and then describe several important examples of measures satisfying logarithmic Sobolev inequalities. The remaining part of the chapter deals with various bounds that are valid in the presence of logarithmic Sobolev inequalities.
12#
發(fā)表于 2025-3-23 14:55:02 | 只看該作者
13#
發(fā)表于 2025-3-23 22:04:12 | 只看該作者
14#
發(fā)表于 2025-3-24 00:04:16 | 只看該作者
15#
發(fā)表于 2025-3-24 05:58:31 | 只看該作者
Logarithmic Sobolev Inequalitiesof functions, not necessarily under the Lipschitz hypothesis. To introduce this class of analytic inequalities, first we briefly mention basic properties of the involved entropy functional and then describe several important examples of measures satisfying logarithmic Sobolev inequalities. The remai
16#
發(fā)表于 2025-3-24 09:36:00 | 只看該作者
17#
發(fā)表于 2025-3-24 12:16:41 | 只看該作者
Second Order Spherical Concentrationith respect to growing dimension . in comparison with deviations that are valid for the entire class of Lipschitz functions. These conditions involve derivatives of . of the second order, which may be considered both in the spherical and Euclidean setup.
18#
發(fā)表于 2025-3-24 16:29:28 | 只看該作者
https://doi.org/10.1007/978-3-030-01210-6This definition is frequently used in Convex Geometry, especially for random vectors which are uniformly distributed over a convex body (in which case the body is called isotropic, cf. [144]).
19#
發(fā)表于 2025-3-24 22:44:56 | 只看該作者
Slow coherency and weak connections,In some problems/Sobolev-type inequalities, it makes sense to slightly modify the notion of the generalized modulus of gradient.
20#
發(fā)表于 2025-3-25 00:59:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云和县| 罗江县| 思南县| 南靖县| 左云县| 嘉峪关市| 广德县| 东光县| 阿巴嘎旗| 济阳县| 庆云县| 鹤岗市| 旅游| 辽源市| 凌源市| 志丹县| 拉萨市| 四川省| 休宁县| 秦安县| 宝清县| 抚宁县| 化隆| 库车县| 格尔木市| 德庆县| 江永县| 大化| 福鼎市| 牟定县| 沾化县| 延长县| 崇礼县| 洛宁县| 江津市| 日土县| 合作市| 香河县| 扬中市| 凤阳县| 双牌县|