找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Concentration and Gaussian Approximation for Randomized Sums; Sergey Bobkov,Gennadiy Chistyakov,Friedrich G?tze Book 2023 The Editor(s) (i

[復(fù)制鏈接]
樓主: Lactase
31#
發(fā)表于 2025-3-26 21:28:19 | 只看該作者
32#
發(fā)表于 2025-3-27 04:41:46 | 只看該作者
Characteristic Functions of Weighted SumsIn order to study deviations of the distribution functions . from the typical distribution . by means of the Kolmogorov distance, Berry–Esseen-type inequalities, which we discussed in Chapter 3, will be used. To this end we need to focus first on the behavior of characteristic functions of ..
33#
發(fā)表于 2025-3-27 08:54:55 | 只看該作者
Fluctuations of DistributionsIn order to deal with the main Problem 12.1.2, we start with the Kantorovich distance for bounding possible fluctuations of . around . on average.
34#
發(fā)表于 2025-3-27 11:57:55 | 只看該作者
35#
發(fā)表于 2025-3-27 15:28:26 | 只看該作者
36#
發(fā)表于 2025-3-27 18:57:51 | 只看該作者
Slow coherency and weak connections,lity distributions. In this chapter, these functionals are discussed for product measures (in which case one can also refine upper bounds on “small ball” probabilities), for joint distributions of pairwise independent random variables, and for coordinate-symmetric distributions. We also discuss the
37#
發(fā)表于 2025-3-27 23:48:13 | 只看該作者
Slow coherency and weak connections,ctor. However, information on various bounds on characteristic functions and their deviations from the characteristic function of another law on the real line will be needed for a different purpose – to study the Kolmogorov and Lévy distances between the corresponding distribution functions. In this
38#
發(fā)表于 2025-3-28 04:46:42 | 只看該作者
Slow coherency and weak connections,istance), and also discuss possible improved rates of approximation when replacing the normal law by corresponding Edgeworth corrections. The first section deals with moment based quantities for single random variables
39#
發(fā)表于 2025-3-28 09:41:57 | 只看該作者
40#
發(fā)表于 2025-3-28 11:45:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德江县| 察哈| 广汉市| 迁安市| 临高县| 漳州市| 怀化市| 巴楚县| 新营市| 巍山| 北川| 靖宇县| 临澧县| 涪陵区| 平定县| 宁波市| 民和| 荣成市| 遵义市| 自贡市| 双峰县| 沙田区| 天长市| 曲靖市| 玉环县| 镇雄县| 巨鹿县| 壤塘县| 枣阳市| 蚌埠市| 长白| 双城市| 巴中市| 高阳县| 镇江市| 揭西县| 晋城| 阿拉善右旗| 汾阳市| 淳安县| 古交市|