找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries; Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi

[復制鏈接]
查看: 51439|回復: 39
樓主
發(fā)表于 2025-3-21 18:28:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries
編輯Gheorghe Munteanu
視頻videohttp://file.papertrans.cn/232/231539/231539.mp4
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries;  Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi
描述From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math- ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970‘s by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
出版日期Book 2004
關鍵詞Finsler geometry; Volume; curvature; manifold; quantum field theory
版次1
doihttps://doi.org/10.1007/978-1-4020-2206-7
isbn_softcover978-90-481-6614-5
isbn_ebook978-1-4020-2206-7Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media Dordrecht 2004
The information of publication is updating

書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries影響因子(影響力)




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries影響因子(影響力)學科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries網(wǎng)絡公開度




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries網(wǎng)絡公開度學科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries被引頻次




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries被引頻次學科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries年度引用




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries年度引用學科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries讀者反饋




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:34:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:40 | 只看該作者
地板
發(fā)表于 2025-3-22 05:14:07 | 只看該作者
5#
發(fā)表于 2025-3-22 08:46:40 | 只看該作者
Book 2004In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math
6#
發(fā)表于 2025-3-22 12:54:17 | 只看該作者
Complex Lagrange geometry,a Lagrange space is obtained. Certainly, this generalization lost a good definition of the length arc and all its consequences, but the obtained notion has the advantage of multiple applications, especially in theoretical physics.
7#
發(fā)表于 2025-3-22 18:54:22 | 只看該作者
8#
發(fā)表于 2025-3-23 00:55:26 | 只看該作者
Complex Spaces in Finsler, Lagrange and Hamilton Geometries
9#
發(fā)表于 2025-3-23 04:17:48 | 只看該作者
10#
發(fā)表于 2025-3-23 08:37:07 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桃园县| 乌兰浩特市| 康马县| 永年县| 南召县| 河池市| 南漳县| 义马市| 察哈| 六枝特区| 永春县| 辽宁省| 永济市| 绿春县| 上虞市| 乐陵市| 出国| 闸北区| 威海市| 贡山| 开封县| 金沙县| 元氏县| 敖汉旗| 西丰县| 龙海市| 黎城县| 布尔津县| 平和县| 石景山区| 沙田区| 讷河市| 天镇县| 玉树县| 民乐县| 娄底市| 安远县| 新乐市| 潜江市| 苏尼特右旗| 宁乡县|