找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries; Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi

[復(fù)制鏈接]
查看: 51440|回復(fù): 39
樓主
發(fā)表于 2025-3-21 18:28:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries
編輯Gheorghe Munteanu
視頻videohttp://file.papertrans.cn/232/231539/231539.mp4
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries;  Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi
描述From a historical point of view, the theory we submit to the present study has its origins in the famous dissertation of P. Finsler from 1918 ([Fi]). In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math- ematicians (E. Cartan, L. Berwald, S.S. Chem, H. Rund) had the patience to penetrate into a universe of tensors, which made them compare it to a jungle. To aU of us, who study nowadays Finsler geometry, it is obvious that the qualitative leap was made in the 1970‘s by the crystallization of the nonlinear connection notion (a notion which is almost as old as Finsler space, [SZ4]) and by work-skills into its adapted frame fields. The results obtained by M. Matsumoto (coUected later, in 1986, in a monograph, [Ma3]) aroused interest not only in Japan, but also in other countries such as Romania, Hungary, Canada and the USA, where schools of Finsler geometry are founded and are presently widely recognized.
出版日期Book 2004
關(guān)鍵詞Finsler geometry; Volume; curvature; manifold; quantum field theory
版次1
doihttps://doi.org/10.1007/978-1-4020-2206-7
isbn_softcover978-90-481-6614-5
isbn_ebook978-1-4020-2206-7Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media Dordrecht 2004
The information of publication is updating

書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries影響因子(影響力)




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries影響因子(影響力)學(xué)科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries網(wǎng)絡(luò)公開度




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries被引頻次




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries被引頻次學(xué)科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries年度引用




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries年度引用學(xué)科排名




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries讀者反饋




書目名稱Complex Spaces in Finsler, Lagrange and Hamilton Geometries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:34:09 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:03:40 | 只看該作者
地板
發(fā)表于 2025-3-22 05:14:07 | 只看該作者
5#
發(fā)表于 2025-3-22 08:46:40 | 只看該作者
Book 2004In a the classical notion also conventional classification, Finsler geometry has besides a number of generalizations, which use the same work technique and which can be considered self-geometries: Lagrange and Hamilton spaces. Finsler geometry had a period of incubation long enough, so that few math
6#
發(fā)表于 2025-3-22 12:54:17 | 只看該作者
Complex Lagrange geometry,a Lagrange space is obtained. Certainly, this generalization lost a good definition of the length arc and all its consequences, but the obtained notion has the advantage of multiple applications, especially in theoretical physics.
7#
發(fā)表于 2025-3-22 18:54:22 | 只看該作者
8#
發(fā)表于 2025-3-23 00:55:26 | 只看該作者
Complex Spaces in Finsler, Lagrange and Hamilton Geometries
9#
發(fā)表于 2025-3-23 04:17:48 | 只看該作者
10#
發(fā)表于 2025-3-23 08:37:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰溪市| 朝阳市| 鱼台县| 道真| 左贡县| 思南县| 大姚县| 铁岭市| 鲁山县| 商洛市| 城步| 察隅县| 深州市| 长白| 东乡族自治县| 犍为县| 合山市| 中宁县| 卓资县| 武平县| 巫溪县| 武定县| 四川省| 郎溪县| 铜川市| 徐闻县| 简阳市| 宜都市| 双城市| 宁海县| 中牟县| 苍山县| 江山市| 乌什县| 华池县| 临城县| 阿瓦提县| 商河县| 鄂州市| 伊通| 汝南县|