找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries; Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi

[復制鏈接]
樓主: Ingrown-Toenail
11#
發(fā)表于 2025-3-23 11:27:09 | 只看該作者
Hamilton and Cartan complex spaces, mechanics. The support of this geometry is the cotangent bundle of a manifold. Imposing conditions of homogeneity for Hamiltonian metrics are obtained the Cartan spaces, which are analogous to Finsler spaces on the cotangent bundle. The results in this domain are numerous and of interest for applic
12#
發(fā)表于 2025-3-23 15:18:50 | 只看該作者
Fundamental Theories of Physicshttp://image.papertrans.cn/c/image/231539.jpg
13#
發(fā)表于 2025-3-23 20:26:58 | 只看該作者
14#
發(fā)表于 2025-3-23 22:32:13 | 只看該作者
978-90-481-6614-5Springer Science+Business Media Dordrecht 2004
15#
發(fā)表于 2025-3-24 04:10:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:58:51 | 只看該作者
Ableitung des Untersuchungsmodells, mechanics. The support of this geometry is the cotangent bundle of a manifold. Imposing conditions of homogeneity for Hamiltonian metrics are obtained the Cartan spaces, which are analogous to Finsler spaces on the cotangent bundle. The results in this domain are numerous and of interest for applic
17#
發(fā)表于 2025-3-24 13:31:39 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:39 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:41 | 只看該作者
https://doi.org/10.1057/9780230598485The results of this chapter are fairly standard and should be well known to geometers. As general references we mention [K4, KN, MI, Ni2] . We consider it useful to repeat these notions for an unitary understanding of the book.
20#
發(fā)表于 2025-3-24 23:36:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
庆安县| 名山县| 奎屯市| 冕宁县| 江达县| 金华市| 泰来县| 桐庐县| 南江县| 竹山县| 榕江县| 明溪县| 拉萨市| 枣强县| 道真| 洮南市| 修水县| 靖远县| 兴海县| 河源市| 新竹县| 祁连县| 大荔县| 连山| 汾西县| 象山县| 静宁县| 泽普县| 龙江县| 徐州市| 奇台县| 建水县| 凌源市| 基隆市| 巴林右旗| 乌拉特前旗| 临颍县| 石林| 南漳县| 平邑县| 保定市|