找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Spaces in Finsler, Lagrange and Hamilton Geometries; Gheorghe Munteanu Book 2004 Springer Science+Business Media Dordrecht 2004 Fi

[復(fù)制鏈接]
樓主: Ingrown-Toenail
11#
發(fā)表于 2025-3-23 11:27:09 | 只看該作者
Hamilton and Cartan complex spaces, mechanics. The support of this geometry is the cotangent bundle of a manifold. Imposing conditions of homogeneity for Hamiltonian metrics are obtained the Cartan spaces, which are analogous to Finsler spaces on the cotangent bundle. The results in this domain are numerous and of interest for applic
12#
發(fā)表于 2025-3-23 15:18:50 | 只看該作者
Fundamental Theories of Physicshttp://image.papertrans.cn/c/image/231539.jpg
13#
發(fā)表于 2025-3-23 20:26:58 | 只看該作者
14#
發(fā)表于 2025-3-23 22:32:13 | 只看該作者
978-90-481-6614-5Springer Science+Business Media Dordrecht 2004
15#
發(fā)表于 2025-3-24 04:10:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:58:51 | 只看該作者
Ableitung des Untersuchungsmodells, mechanics. The support of this geometry is the cotangent bundle of a manifold. Imposing conditions of homogeneity for Hamiltonian metrics are obtained the Cartan spaces, which are analogous to Finsler spaces on the cotangent bundle. The results in this domain are numerous and of interest for applic
17#
發(fā)表于 2025-3-24 13:31:39 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:39 | 只看該作者
19#
發(fā)表于 2025-3-24 20:59:41 | 只看該作者
https://doi.org/10.1057/9780230598485The results of this chapter are fairly standard and should be well known to geometers. As general references we mention [K4, KN, MI, Ni2] . We consider it useful to repeat these notions for an unitary understanding of the book.
20#
發(fā)表于 2025-3-24 23:36:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华宁县| 西丰县| 锦屏县| 深州市| 通江县| 灌阳县| 勃利县| 会同县| 梁山县| 赣州市| 巫溪县| 增城市| 天峨县| 东安县| 鄯善县| 白水县| 昭平县| 兴文县| 东乡族自治县| 合作市| 赣州市| 三明市| 武穴市| 蒙自县| 岑溪市| 望城县| 平泉县| 莱州市| 濮阳市| 武清区| 新平| 东方市| 浮梁县| 吴桥县| 明光市| 兴国县| 武邑县| 宜州市| 颍上县| 社旗县| 寻甸|