找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Systems with Multistability and Hidden Attractors; Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 04:51:23 | 只看該作者
22#
發(fā)表于 2025-3-25 11:13:53 | 只看該作者
IntroductionEver since its discovery in 1963, the Lorenz system has been a paradigm of chaos and the Lorenz attractor has become an emblem of chaos. Lorenz himself thus has been marked by history as an icon of chaos theory.
23#
發(fā)表于 2025-3-25 14:43:54 | 只看該作者
Chaotic Systems with Stable EquilibriaAlthough the ?il’nikov theorem ensures horseshoe chaos to exist with a homoclinic orbit if its characteristic eigenvalues with negative real parts at the equilibria satisfy some specific conditions, it does not rule out the possibility of encountering chaos in systems with stable equilibria.
24#
發(fā)表于 2025-3-25 17:47:08 | 只看該作者
25#
發(fā)表于 2025-3-25 23:26:19 | 只看該作者
Hyperchaotic Systems with Hidden AttractorsRecently, research focus has been shifted from classifying periodic and chaotic attractors to self-excited and hidden attractors [.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.].
26#
發(fā)表于 2025-3-26 03:20:54 | 只看該作者
27#
發(fā)表于 2025-3-26 04:40:18 | 只看該作者
28#
發(fā)表于 2025-3-26 08:55:55 | 只看該作者
Multi-Stability in Self-Reproducing SystemsAs we discussed in the above chapters, many dynamical systems can produce similar attractors, specifically some of which [1–10] share the same Lyapunov exponents.
29#
發(fā)表于 2025-3-26 13:01:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:21:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳江市| 肇东市| 冕宁县| 饶阳县| 柳林县| 萨嘎县| 雅安市| 许昌市| 巨鹿县| 石首市| 萨迦县| 田东县| 万全县| 定远县| 九龙坡区| 伊春市| 彭泽县| 洪雅县| 天津市| 赤城县| 桐乡市| 马鞍山市| 锦州市| 开原市| 荣昌县| 和龙市| 武乡县| 梅河口市| 米泉市| 仁怀市| 洞口县| 河津市| 应用必备| 佛学| 临安市| 景东| 芜湖市| 大足县| 沿河| 海城市| 宜城市|