找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Systems with Multistability and Hidden Attractors; Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli

[復(fù)制鏈接]
查看: 53414|回復(fù): 49
樓主
發(fā)表于 2025-3-21 16:03:36 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Chaotic Systems with Multistability and Hidden Attractors
編輯Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen
視頻videohttp://file.papertrans.cn/224/223932/223932.mp4
概述Presents recent findings and progress in Chaotic Systems with Multistability and Hidden Attractors, including both theoretical advances and potential applications.Presents a study of multistability an
叢書名稱Emergence, Complexity and Computation
圖書封面Titlebook: Chaotic Systems with Multistability and Hidden Attractors;  Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli
描述.This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide?readers directly to the research front of the new scientific studies.?.This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications.?.This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, compu
出版日期Book 2021
關(guān)鍵詞Chaotic Systems; Multistability; Hidden Attractors; Chaos; Complexity; Complex Systgems
版次1
doihttps://doi.org/10.1007/978-3-030-75821-9
isbn_softcover978-3-030-75823-3
isbn_ebook978-3-030-75821-9Series ISSN 2194-7287 Series E-ISSN 2194-7295
issn_series 2194-7287
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Chaotic Systems with Multistability and Hidden Attractors影響因子(影響力)




書目名稱Chaotic Systems with Multistability and Hidden Attractors影響因子(影響力)學(xué)科排名




書目名稱Chaotic Systems with Multistability and Hidden Attractors網(wǎng)絡(luò)公開度




書目名稱Chaotic Systems with Multistability and Hidden Attractors網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chaotic Systems with Multistability and Hidden Attractors被引頻次




書目名稱Chaotic Systems with Multistability and Hidden Attractors被引頻次學(xué)科排名




書目名稱Chaotic Systems with Multistability and Hidden Attractors年度引用




書目名稱Chaotic Systems with Multistability and Hidden Attractors年度引用學(xué)科排名




書目名稱Chaotic Systems with Multistability and Hidden Attractors讀者反饋




書目名稱Chaotic Systems with Multistability and Hidden Attractors讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:55:31 | 只看該作者
?il’nikov Theoremsphere, having an invariant subset that is homeomorphic to a topological Bernoulli process with two symbols. On the basis of the construction of this diffeomorphism, Smale developed a construction, which is now known as the “Smale horseshoe”.
板凳
發(fā)表于 2025-3-22 04:23:32 | 只看該作者
地板
發(fā)表于 2025-3-22 06:08:04 | 只看該作者
5#
發(fā)表于 2025-3-22 08:49:40 | 只看該作者
6#
發(fā)表于 2025-3-22 15:30:45 | 只看該作者
2194-7287 potential applications.Presents a study of multistability an.This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventi
7#
發(fā)表于 2025-3-22 18:32:14 | 只看該作者
https://doi.org/10.1007/b102240sence of such systems provides some new insights in the relationships between the local properties of a line or curve of equilibria and the complex dynamical behaviors of the underlying chaotic systems [.].
8#
發(fā)表于 2025-3-23 00:22:03 | 只看該作者
9#
發(fā)表于 2025-3-23 03:15:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:14:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云浮市| 桂阳县| 陆河县| 玛多县| 包头市| 永宁县| 鄯善县| 长汀县| 道真| 台山市| 体育| 浮梁县| 揭阳市| 施甸县| 保德县| 静安区| 马山县| 石屏县| 乡城县| 门源| 丰宁| 泰兴市| 吉林省| 崇文区| 平泉县| 靖州| 江安县| 温泉县| 阿坝县| 宁阳县| 汉沽区| 合阳县| 峨眉山市| 南召县| 张北县| 新兴县| 威宁| 章丘市| 庆阳市| 乌拉特前旗| 邓州市|