找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Systems with Multistability and Hidden Attractors; Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli

[復制鏈接]
樓主: 遮陽傘
31#
發(fā)表于 2025-3-26 22:39:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:17 | 只看該作者
https://doi.org/10.1007/b102240tal singularities of multi-dimensional dynamical systems. Although some examples of such systems have been shown by Poincare, Birkhoff, Morse, and some other researchers, the conceptual foundation of systems with a countable set of rough periodic motions was laid in the works of Smale, based on the
33#
發(fā)表于 2025-3-27 09:11:55 | 只看該作者
https://doi.org/10.1007/b102240ilibrium received considerable attention. Dissipative systems without equilibria can also be considered as systems with hidden attractors. Chaotic systems with hidden attractors do not satisfy the ?il’nikov criterion. Thus, they have neither homoclinic nor heteroclinic orbits [.]. From a computation
34#
發(fā)表于 2025-3-27 09:59:31 | 只看該作者
https://doi.org/10.1007/b102240ported in the literature, since there are some new mysterious features of such chaotic systems with important applications in engineering [.]. The presence of such systems provides some new insights in the relationships between the local properties of a line or curve of equilibria and the complex dy
35#
發(fā)表于 2025-3-27 17:25:19 | 只看該作者
36#
發(fā)表于 2025-3-27 18:42:11 | 只看該作者
Power System Stability Indices,f the qualitative properties of chaotic systems, including sensitive dependence on initial conditions [.], Lorenz [.], R?ssler [.] and Chua [., .] had identified some very simple examples with quadratic or piecewise linear nonlinearities.
37#
發(fā)表于 2025-3-28 00:40:47 | 只看該作者
38#
發(fā)表于 2025-3-28 03:26:13 | 只看該作者
Chaotic Jerk Systems with Hidden Attractorsf the qualitative properties of chaotic systems, including sensitive dependence on initial conditions [.], Lorenz [.], R?ssler [.] and Chua [., .] had identified some very simple examples with quadratic or piecewise linear nonlinearities.
39#
發(fā)表于 2025-3-28 09:58:09 | 只看該作者
40#
發(fā)表于 2025-3-28 11:41:31 | 只看該作者
?il’nikov Theoremtal singularities of multi-dimensional dynamical systems. Although some examples of such systems have been shown by Poincare, Birkhoff, Morse, and some other researchers, the conceptual foundation of systems with a countable set of rough periodic motions was laid in the works of Smale, based on the
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吴堡县| 苗栗县| 南乐县| 景宁| 丹阳市| 淮南市| 沽源县| 沂源县| 成武县| 台北市| 盘山县| 方城县| 临沭县| 海门市| 隆德县| 瓮安县| 颍上县| 五华县| 阳东县| 永宁县| 武宣县| 海淀区| 香格里拉县| 普格县| 双辽市| 金平| 理塘县| 临沂市| 鄂尔多斯市| 花莲市| 隆回县| 庆元县| 西和县| 茂名市| 昌吉市| 漯河市| 凭祥市| 伊宁市| 鄂尔多斯市| 应城市| 克拉玛依市|