找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Systems with Multistability and Hidden Attractors; Xiong Wang,Nikolay V. Kuznetsov,Guanrong Chen Book 2021 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: 遮陽傘
31#
發(fā)表于 2025-3-26 22:39:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:17 | 只看該作者
https://doi.org/10.1007/b102240tal singularities of multi-dimensional dynamical systems. Although some examples of such systems have been shown by Poincare, Birkhoff, Morse, and some other researchers, the conceptual foundation of systems with a countable set of rough periodic motions was laid in the works of Smale, based on the
33#
發(fā)表于 2025-3-27 09:11:55 | 只看該作者
https://doi.org/10.1007/b102240ilibrium received considerable attention. Dissipative systems without equilibria can also be considered as systems with hidden attractors. Chaotic systems with hidden attractors do not satisfy the ?il’nikov criterion. Thus, they have neither homoclinic nor heteroclinic orbits [.]. From a computation
34#
發(fā)表于 2025-3-27 09:59:31 | 只看該作者
https://doi.org/10.1007/b102240ported in the literature, since there are some new mysterious features of such chaotic systems with important applications in engineering [.]. The presence of such systems provides some new insights in the relationships between the local properties of a line or curve of equilibria and the complex dy
35#
發(fā)表于 2025-3-27 17:25:19 | 只看該作者
36#
發(fā)表于 2025-3-27 18:42:11 | 只看該作者
Power System Stability Indices,f the qualitative properties of chaotic systems, including sensitive dependence on initial conditions [.], Lorenz [.], R?ssler [.] and Chua [., .] had identified some very simple examples with quadratic or piecewise linear nonlinearities.
37#
發(fā)表于 2025-3-28 00:40:47 | 只看該作者
38#
發(fā)表于 2025-3-28 03:26:13 | 只看該作者
Chaotic Jerk Systems with Hidden Attractorsf the qualitative properties of chaotic systems, including sensitive dependence on initial conditions [.], Lorenz [.], R?ssler [.] and Chua [., .] had identified some very simple examples with quadratic or piecewise linear nonlinearities.
39#
發(fā)表于 2025-3-28 09:58:09 | 只看該作者
40#
發(fā)表于 2025-3-28 11:41:31 | 只看該作者
?il’nikov Theoremtal singularities of multi-dimensional dynamical systems. Although some examples of such systems have been shown by Poincare, Birkhoff, Morse, and some other researchers, the conceptual foundation of systems with a countable set of rough periodic motions was laid in the works of Smale, based on the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沙田区| 泰来县| 东山县| 眉山市| 容城县| 潢川县| 子洲县| 崇明县| 监利县| 丹寨县| 贡嘎县| 和顺县| 正镶白旗| 怀集县| 博罗县| 积石山| 弥渡县| 徐闻县| 鲜城| 罗源县| 洛南县| 横山县| 连南| 康保县| 深泽县| 彭泽县| 丹江口市| 南雄市| 嫩江县| 抚顺市| 和平区| 潜江市| 朔州市| 德保县| 高邑县| 岑溪市| 三都| 岳阳县| 涿鹿县| 扬中市| 张家界市|