找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: injurious
11#
發(fā)表于 2025-3-23 12:29:56 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:36 | 只看該作者
,A Beginner’s Guide to Using a Webcam,In this chapter we present results concerning the boundedness and compactness of integral transforms generated by various types of fractional integrals.
13#
發(fā)表于 2025-3-23 18:07:13 | 只看該作者
14#
發(fā)表于 2025-3-23 22:13:27 | 只看該作者
15#
發(fā)表于 2025-3-24 03:05:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:12 | 只看該作者
Problems,In this section we list some problems which seem to have resisted solution up to now.
17#
發(fā)表于 2025-3-24 11:42:49 | 只看該作者
Ball Fractional Integrals,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
18#
發(fā)表于 2025-3-24 16:13:33 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:35 | 只看該作者
20#
發(fā)表于 2025-3-24 23:51:10 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岗巴县| 内丘县| 区。| 习水县| 新巴尔虎左旗| 徐闻县| 南木林县| 青浦区| 大方县| 珲春市| 武城县| 铜陵市| 新干县| 乌兰察布市| 九江县| 定州市| 永川市| 融水| 敦化市| 靖边县| 开平市| 庄河市| 山阳县| 南陵县| 同心县| 温泉县| 密山市| 南丹县| 沁水县| 安远县| 定南县| 阳新县| 洪雅县| 吴堡县| 东乡族自治县| 尼勒克县| 左权县| 隆尧县| 高碑店市| 商南县| 通山县|