找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 03:31:52 | 只看該作者
22#
發(fā)表于 2025-3-25 11:14:25 | 只看該作者
23#
發(fā)表于 2025-3-25 12:26:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:19 | 只看該作者
978-90-481-6018-1Springer Science+Business Media B.V. 2002
25#
發(fā)表于 2025-3-25 22:39:14 | 只看該作者
26#
發(fā)表于 2025-3-26 01:09:45 | 只看該作者
Lunar and Planetary Webcam User‘s Guides to give complete descriptions of those pairs of weight functions for which these fractional integrals generate operators which are bounded or compact from one weighted Banach function space into another. This problem was studied earlier by many authors, for instance, for fractional Riemann-Liouvil
27#
發(fā)表于 2025-3-26 04:45:30 | 只看該作者
,Webcams, Plus a “Quick Start” Guide,mander type. We establish ..↑.. (1 < . ≤ . < ∞) boundedness criteria which are very easy to verify. The proofs depend heavily on the results on the Riemann-Liouville operator which were derived in the previous chapter. Then follows a study, from the point of view of boundedness and compactness, of p
28#
發(fā)表于 2025-3-26 09:40:29 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and
29#
發(fā)表于 2025-3-26 14:36:10 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安康市| 获嘉县| 浑源县| 进贤县| 屏东县| 峨眉山市| 青河县| 阿图什市| 西和县| 浙江省| 蓝山县| 塘沽区| 保靖县| 疏附县| 五河县| 楚雄市| 蛟河市| 开平市| 天全县| 元江| 林甸县| 来凤县| 汽车| 延吉市| 冕宁县| 和硕县| 铜鼓县| 阿拉尔市| 荥阳市| 卫辉市| 龙门县| 贵港市| 城固县| 个旧市| 晋宁县| 宜川县| 托里县| 子洲县| 米泉市| 阿城市| 黄浦区|