找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 03:31:52 | 只看該作者
22#
發(fā)表于 2025-3-25 11:14:25 | 只看該作者
23#
發(fā)表于 2025-3-25 12:26:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:19 | 只看該作者
978-90-481-6018-1Springer Science+Business Media B.V. 2002
25#
發(fā)表于 2025-3-25 22:39:14 | 只看該作者
26#
發(fā)表于 2025-3-26 01:09:45 | 只看該作者
Lunar and Planetary Webcam User‘s Guides to give complete descriptions of those pairs of weight functions for which these fractional integrals generate operators which are bounded or compact from one weighted Banach function space into another. This problem was studied earlier by many authors, for instance, for fractional Riemann-Liouvil
27#
發(fā)表于 2025-3-26 04:45:30 | 只看該作者
,Webcams, Plus a “Quick Start” Guide,mander type. We establish ..↑.. (1 < . ≤ . < ∞) boundedness criteria which are very easy to verify. The proofs depend heavily on the results on the Riemann-Liouville operator which were derived in the previous chapter. Then follows a study, from the point of view of boundedness and compactness, of p
28#
發(fā)表于 2025-3-26 09:40:29 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and
29#
發(fā)表于 2025-3-26 14:36:10 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳原县| 武平县| 华坪县| 栖霞市| 河池市| 桃园市| 兴仁县| 双辽市| 清丰县| 达日县| 宽城| 新民市| 庐江县| 平和县| 赣榆县| 镇赉县| 达拉特旗| 志丹县| 永善县| 武城县| 襄城县| 廊坊市| 南华县| 保亭| 临泽县| 江安县| 揭西县| 额尔古纳市| 甘孜县| 呼伦贝尔市| 永胜县| 西贡区| 肃南| 桃园市| 河源市| 浦江县| 临洮县| 平谷区| 邢台市| 新兴县| 屏边|