找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復(fù)制鏈接]
樓主: injurious
11#
發(fā)表于 2025-3-23 12:29:56 | 只看該作者
12#
發(fā)表于 2025-3-23 17:26:36 | 只看該作者
,A Beginner’s Guide to Using a Webcam,In this chapter we present results concerning the boundedness and compactness of integral transforms generated by various types of fractional integrals.
13#
發(fā)表于 2025-3-23 18:07:13 | 只看該作者
14#
發(fā)表于 2025-3-23 22:13:27 | 只看該作者
15#
發(fā)表于 2025-3-24 03:05:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:14:12 | 只看該作者
Problems,In this section we list some problems which seem to have resisted solution up to now.
17#
發(fā)表于 2025-3-24 11:42:49 | 只看該作者
Ball Fractional Integrals,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
18#
發(fā)表于 2025-3-24 16:13:33 | 只看該作者
19#
發(fā)表于 2025-3-24 21:26:35 | 只看該作者
20#
發(fā)表于 2025-3-24 23:51:10 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and to construct the solution in closed form.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌县| 务川| 肥东县| 易门县| 车致| 清镇市| 隆德县| 通渭县| 万荣县| 晋中市| 紫云| 洛隆县| 龙陵县| 友谊县| 宁化县| 瑞安市| 隆化县| 浪卡子县| 墨竹工卡县| 锦州市| 泾川县| 红河县| 汶上县| 香港| 余庆县| 丰县| 防城港市| 法库县| 眉山市| 宁安市| 米泉市| 汾西县| 黔江区| 达拉特旗| 安吉县| 萍乡市| 青阳县| 孝昌县| 灵山县| 鹤山市| 沅江市|