找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復(fù)制鏈接]
查看: 46950|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:15:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bounded and Compact Integral Operators
影響因子2023David E. Edmunds,Vakhtang Kokilashvili,Alexander M
視頻videohttp://file.papertrans.cn/191/190072/190072.mp4
學(xué)科分類Mathematics and Its Applications
圖書封面Titlebook: Bounded and Compact Integral Operators;  David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.
影響因子The monograph presents some of the authors‘ recent and original results concerning boundedness and compactness problems in Banach function spaces both for classical operators and integral transforms defined, generally speaking, on nonhomogeneous spaces. Itfocuses onintegral operators naturally arising in boundary value problems for PDE, the spectral theory of differential operators, continuum and quantum mechanics, stochastic processes etc. The book may be considered as a systematic and detailed analysis of a large class of specific integral operators from the boundedness and compactness point of view. A characteristic feature of the monograph is that most of the statements proved here have the form of criteria. These criteria enable us, for example, togive var- ious explicit examples of pairs of weighted Banach function spaces governing boundedness/compactness of a wide class of integral operators. The book has two main parts. The first part, consisting of Chapters 1-5, covers theinvestigation ofclassical operators: Hardy-type transforms, fractional integrals, potentials and maximal functions. Our main goal is to give a complete description of those Banach function spaces in which
Pindex Book 2002
The information of publication is updating

書目名稱Bounded and Compact Integral Operators影響因子(影響力)




書目名稱Bounded and Compact Integral Operators影響因子(影響力)學(xué)科排名




書目名稱Bounded and Compact Integral Operators網(wǎng)絡(luò)公開度




書目名稱Bounded and Compact Integral Operators網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bounded and Compact Integral Operators被引頻次




書目名稱Bounded and Compact Integral Operators被引頻次學(xué)科排名




書目名稱Bounded and Compact Integral Operators年度引用




書目名稱Bounded and Compact Integral Operators年度引用學(xué)科排名




書目名稱Bounded and Compact Integral Operators讀者反饋




書目名稱Bounded and Compact Integral Operators讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:37:28 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:10 | 只看該作者
Potentials on ,,,nt conditions for boundedness from ..... into L...., when 1 < . < ∞, 0 < . < ∞ and .. A generalization of Sawyer’s result [258] is presented. Then a compactness criterion for this operator is proved, and upper and lower estimates of its distance from the class of compact operators are derived.
5#
發(fā)表于 2025-3-22 11:10:40 | 只看該作者
6#
發(fā)表于 2025-3-22 13:57:52 | 只看該作者
Singular Integrals,s for partial differential equations with variable coefficients. For example, when the underlying domain is strongly pseudo-convex, one is led to use the concept of the Heisenberg group (and more general structures) as a model for the boundary of the domain in the theory of functions of several comp
7#
發(fā)表于 2025-3-22 19:31:53 | 只看該作者
8#
發(fā)表于 2025-3-22 23:06:54 | 只看該作者
9#
發(fā)表于 2025-3-23 02:04:31 | 只看該作者
10#
發(fā)表于 2025-3-23 07:32:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
山西省| 九江县| 虹口区| 紫金县| 兰考县| 武安市| 安陆市| 高雄县| 理塘县| 永康市| 新田县| 博乐市| 嘉兴市| 延津县| 长垣县| 开化县| 义乌市| 奉贤区| 奉化市| 新巴尔虎左旗| 浙江省| 农安县| 榆树市| 图片| 萨嘎县| 丹棱县| 黑河市| 灵武市| 边坝县| 资中县| 吉林市| 金川县| 繁昌县| 攀枝花市| 呼和浩特市| 百色市| 健康| 周宁县| 成都市| 屏山县| 巴青县|