找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bounded and Compact Integral Operators; David E. Edmunds,Vakhtang Kokilashvili,Alexander M Book 2002 Springer Science+Business Media B.V.

[復制鏈接]
樓主: injurious
21#
發(fā)表于 2025-3-25 03:31:52 | 只看該作者
22#
發(fā)表于 2025-3-25 11:14:25 | 只看該作者
23#
發(fā)表于 2025-3-25 12:26:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:49:19 | 只看該作者
978-90-481-6018-1Springer Science+Business Media B.V. 2002
25#
發(fā)表于 2025-3-25 22:39:14 | 只看該作者
26#
發(fā)表于 2025-3-26 01:09:45 | 只看該作者
Lunar and Planetary Webcam User‘s Guides to give complete descriptions of those pairs of weight functions for which these fractional integrals generate operators which are bounded or compact from one weighted Banach function space into another. This problem was studied earlier by many authors, for instance, for fractional Riemann-Liouvil
27#
發(fā)表于 2025-3-26 04:45:30 | 只看該作者
,Webcams, Plus a “Quick Start” Guide,mander type. We establish ..↑.. (1 < . ≤ . < ∞) boundedness criteria which are very easy to verify. The proofs depend heavily on the results on the Riemann-Liouville operator which were derived in the previous chapter. Then follows a study, from the point of view of boundedness and compactness, of p
28#
發(fā)表于 2025-3-26 09:40:29 | 只看該作者
Planetary Webcams and Their Alternatives,rest in ball fractional integrals (BFI’s) arises from the fact that Riesz potentials ... over a ball . may be represented by a composition of such integrals. This enables one to derive necessary and sufficient solvability conditions for the equation I.φ = . in Lebesgue spaces with power weights and
29#
發(fā)表于 2025-3-26 14:36:10 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
通江县| 建阳市| 乐都县| 都昌县| 大英县| 临泉县| 锡林浩特市| 资中县| 高州市| 开远市| 翁牛特旗| 阿城市| 娱乐| 嘉义市| 大方县| 鹤壁市| 视频| 高密市| 平顺县| 太康县| 通海县| 伊宁市| 临沂市| 岫岩| 安康市| 邛崃市| 濉溪县| 神木县| 衡山县| 绵竹市| 邢台市| 浦江县| 阜南县| 鄂温| 呼和浩特市| 贡觉县| 云和县| 博乐市| 宁强县| 临潭县| 六盘水市|