找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復制鏈接]
查看: 26553|回復: 38
樓主
發(fā)表于 2025-3-21 16:22:56 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Boosted Statistical Relational Learners
期刊簡稱From Benchmarks to D
影響因子2023Sriraam Natarajan,Kristian Kersting,Jude Shavlik
視頻videohttp://file.papertrans.cn/190/189793/189793.mp4
發(fā)行地址Includes supplementary material:
學科分類SpringerBriefs in Computer Science
圖書封面Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014
影響因子This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics wi
Pindex Book 2014
The information of publication is updating

書目名稱Boosted Statistical Relational Learners影響因子(影響力)




書目名稱Boosted Statistical Relational Learners影響因子(影響力)學科排名




書目名稱Boosted Statistical Relational Learners網(wǎng)絡公開度




書目名稱Boosted Statistical Relational Learners網(wǎng)絡公開度學科排名




書目名稱Boosted Statistical Relational Learners被引頻次




書目名稱Boosted Statistical Relational Learners被引頻次學科排名




書目名稱Boosted Statistical Relational Learners年度引用




書目名稱Boosted Statistical Relational Learners年度引用學科排名




書目名稱Boosted Statistical Relational Learners讀者反饋




書目名稱Boosted Statistical Relational Learners讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:22:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:28:36 | 只看該作者
地板
發(fā)表于 2025-3-22 07:24:25 | 只看該作者
5#
發(fā)表于 2025-3-22 09:23:27 | 只看該作者
6#
發(fā)表于 2025-3-22 16:13:12 | 只看該作者
7#
發(fā)表于 2025-3-22 19:07:14 | 只看該作者
8#
發(fā)表于 2025-3-23 00:37:19 | 只看該作者
Boosted Statistical Relational Learners978-3-319-13644-8Series ISSN 2191-5768 Series E-ISSN 2191-5776
9#
發(fā)表于 2025-3-23 05:03:48 | 只看該作者
10#
發(fā)表于 2025-3-23 09:03:06 | 只看該作者
Palgrave European Film and Media Studiesrning undirected SRL models. More precisely, we adapt the algorithm for learning the popular formalism of Markov Logic Networks. We derive the gradients in this case and present empirical evidence to demonstrate the efficacy of this approach.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岳阳市| 吕梁市| 青阳县| 德州市| 徐闻县| 黄骅市| 从化市| 沧源| 屯昌县| 霍林郭勒市| 丰城市| 芦山县| 新巴尔虎左旗| 伊川县| 平邑县| 驻马店市| 绥宁县| 宁城县| 孟连| 正阳县| 曲沃县| 镇远县| 南江县| 兰溪市| 南涧| 海林市| 鹤岗市| 娄底市| 桦川县| 韶山市| 杭锦旗| 阜南县| 泸定县| 襄汾县| 公主岭市| 竹山县| 无棣县| 凭祥市| 边坝县| 澳门| 洪泽县|