找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復(fù)制鏈接]
樓主: broach
21#
發(fā)表于 2025-3-25 06:40:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:24 | 只看該作者
23#
發(fā)表于 2025-3-25 13:55:30 | 只看該作者
24#
發(fā)表于 2025-3-25 19:53:34 | 只看該作者
Introduction: Where Is Nordic Noir?,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter
25#
發(fā)表于 2025-3-25 20:34:25 | 只看該作者
26#
發(fā)表于 2025-3-26 01:00:20 | 只看該作者
https://doi.org/10.1007/978-3-030-13585-0 of these formulations is that they can succinctly represent probabilistic dependencies among the attributes of different related objects, leading to a compact representation of learned models. Most of these methods essentially use first-order logic to capture domain knowledge and soften the rules u
27#
發(fā)表于 2025-3-26 07:41:21 | 只看該作者
Book 2014context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics wi
28#
發(fā)表于 2025-3-26 11:51:30 | 只看該作者
Introduction, of these formulations is that they can succinctly represent probabilistic dependencies among the attributes of different related objects, leading to a compact representation of learned models. Most of these methods essentially use first-order logic to capture domain knowledge and soften the rules u
29#
發(fā)表于 2025-3-26 16:12:57 | 只看該作者
Book 2014thods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications.The models are highly attractive
30#
發(fā)表于 2025-3-26 19:57:43 | 只看該作者
2191-5768 al Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world app
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松江区| 嘉黎县| 临洮县| 肇州县| 高阳县| 陆良县| 馆陶县| 竹山县| 永清县| 屏东市| 麻栗坡县| 潼南县| 登封市| 新沂市| 松原市| 酉阳| 靖远县| 广河县| 通渭县| 舒兰市| 镇原县| 怀安县| 靖西县| 伊金霍洛旗| 东光县| 红原县| 宝山区| 新余市| 辛集市| 鹰潭市| 郑州市| 邹平县| 襄樊市| 张家界市| 沙湾县| 沧州市| 贵州省| 蓝田县| 中江县| 渑池县| 公主岭市|