找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復(fù)制鏈接]
樓主: broach
11#
發(fā)表于 2025-3-23 10:17:27 | 只看該作者
12#
發(fā)表于 2025-3-23 16:55:44 | 只看該作者
Introduction: Where Is Nordic Noir?,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter with a few NLP applications.
13#
發(fā)表于 2025-3-23 20:29:07 | 只看該作者
Boosting (Bi-)Directed Relational Models,es, instead of just one, results in an expressive model for the conditional distributions of RDNs. We then present a sample set of results that show superior performance when compared to state-of-the-art approaches.
14#
發(fā)表于 2025-3-24 01:03:56 | 只看該作者
Boosting Undirected Relational Models,rning undirected SRL models. More precisely, we adapt the algorithm for learning the popular formalism of Markov Logic Networks. We derive the gradients in this case and present empirical evidence to demonstrate the efficacy of this approach.
15#
發(fā)表于 2025-3-24 05:52:05 | 只看該作者
Boosting in the Presence of Missing Data,umed to be false. In this chapter, we relax this assumption and derive a boosting algorithm that can effectively work with missing data. The derivation is independent of the model and hence we will discuss about adapting it for RDNs and MLNs. As with other chapters, we will conclude with empirical evaluation on the SRL data sets.
16#
發(fā)表于 2025-3-24 08:36:03 | 只看該作者
Boosting Statistical Relational Learning in Action,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter with a few NLP applications.
17#
發(fā)表于 2025-3-24 14:09:08 | 只看該作者
18#
發(fā)表于 2025-3-24 17:14:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:52:22 | 只看該作者
20#
發(fā)表于 2025-3-25 01:39:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢氏县| 红原县| 梁平县| 东乡| 伊春市| 台南县| 英吉沙县| 嘉义市| 承德市| 东安县| 巴东县| 泰顺县| 吴桥县| 格尔木市| 建始县| 巨鹿县| 灵山县| 普宁市| 上虞市| 南木林县| 沾益县| 万年县| 察隅县| 东港市| 安龙县| 茂名市| 孟村| 绥芬河市| 汝城县| 化隆| 华亭县| 阿拉善盟| 望江县| 嘉峪关市| 林周县| 清水河县| 绍兴县| 宝山区| 临江市| 汽车| 德钦县|