找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Boosted Statistical Relational Learners; From Benchmarks to D Sriraam Natarajan,Kristian Kersting,Jude Shavlik Book 2014 The Author(s) 2014

[復制鏈接]
樓主: broach
11#
發(fā)表于 2025-3-23 10:17:27 | 只看該作者
12#
發(fā)表于 2025-3-23 16:55:44 | 只看該作者
Introduction: Where Is Nordic Noir?,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter with a few NLP applications.
13#
發(fā)表于 2025-3-23 20:29:07 | 只看該作者
Boosting (Bi-)Directed Relational Models,es, instead of just one, results in an expressive model for the conditional distributions of RDNs. We then present a sample set of results that show superior performance when compared to state-of-the-art approaches.
14#
發(fā)表于 2025-3-24 01:03:56 | 只看該作者
Boosting Undirected Relational Models,rning undirected SRL models. More precisely, we adapt the algorithm for learning the popular formalism of Markov Logic Networks. We derive the gradients in this case and present empirical evidence to demonstrate the efficacy of this approach.
15#
發(fā)表于 2025-3-24 05:52:05 | 只看該作者
Boosting in the Presence of Missing Data,umed to be false. In this chapter, we relax this assumption and derive a boosting algorithm that can effectively work with missing data. The derivation is independent of the model and hence we will discuss about adapting it for RDNs and MLNs. As with other chapters, we will conclude with empirical evaluation on the SRL data sets.
16#
發(fā)表于 2025-3-24 08:36:03 | 只看該作者
Boosting Statistical Relational Learning in Action,ter, we discuss how this algorithm can be adapted to learn to act in sequential domains. We then present three of our most successful applications in real health care data—two cardiovascular prediction problems and the third is prediction of onset of Alzheimer’s disease. We then conclude the chapter with a few NLP applications.
17#
發(fā)表于 2025-3-24 14:09:08 | 只看該作者
18#
發(fā)表于 2025-3-24 17:14:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:52:22 | 只看該作者
20#
發(fā)表于 2025-3-25 01:39:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 09:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
蕉岭县| 邛崃市| 曲麻莱县| 霞浦县| 万荣县| 临猗县| 湖北省| 沁源县| 元谋县| 陇川县| 鲁山县| 改则县| 武隆县| 哈尔滨市| 礼泉县| 郯城县| 张家界市| 新泰市| 陆河县| 前郭尔| 应用必备| 长治县| 金阳县| 浠水县| 清水县| 封开县| 新巴尔虎左旗| 阜南县| 石泉县| 长汀县| 武冈市| 汉阴县| 靖江市| 小金县| 吉林市| 黄山市| 冕宁县| 永登县| 大名县| 东光县| 宁武县|