找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
31#
發(fā)表于 2025-3-27 00:32:26 | 只看該作者
32#
發(fā)表于 2025-3-27 03:44:59 | 只看該作者
https://doi.org/10.1007/b137719In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
33#
發(fā)表于 2025-3-27 07:25:04 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:39 | 只看該作者
Introduction,In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
35#
發(fā)表于 2025-3-27 14:08:44 | 只看該作者
Transversality Theorems,In this chapter we look into a topic which is the modern version of an old idea, namely ’general position’, and we shall try to explain why it is important.
36#
發(fā)表于 2025-3-27 19:38:20 | 只看該作者
Local Inversion,ther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
37#
發(fā)表于 2025-3-28 00:15:23 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
38#
發(fā)表于 2025-3-28 04:20:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:38:25 | 只看該作者
40#
發(fā)表于 2025-3-28 14:09:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南溪县| 抚远县| 乌兰县| 白玉县| 普洱| 睢宁县| 抚州市| 漳平市| 鄄城县| 华容县| 建德市| 临城县| 铁力市| 定结县| 舞钢市| 左权县| 米林县| 永兴县| 克拉玛依市| 台中县| 察隅县| 印江| 襄樊市| 通榆县| 双城市| 长顺县| 托里县| 兰西县| 顺昌县| 建水县| 滁州市| 昌宁县| 天全县| 济宁市| 阿图什市| 安庆市| 大足县| 清流县| 海南省| 格尔木市| 宁晋县|