找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
41#
發(fā)表于 2025-3-28 15:05:59 | 只看該作者
42#
發(fā)表于 2025-3-28 21:20:17 | 只看該作者
Sarah Blissett,Vaikom S. Mahadevan the neighbourhood of a singular point it is natural to linearize the problem, so that we are then investigating the phase portrait of a linear vector field (for which, incidentally, the local study at the origin and the global study are the same thing). In this chapter we shall see that such an app
43#
發(fā)表于 2025-3-29 00:18:52 | 只看該作者
Interventions in Career Design and Educationum point? This translates into our technical language as follows. Consider a vector field . on a phase space ., and a point . at which . 0 (recall that such a point is traditionally called a .. By differentiation at . we associate to these a linear vector field ., which we naturally call the . of .
44#
發(fā)表于 2025-3-29 05:32:05 | 只看該作者
Interventions in Career Design and Educationd orbits (known also under the poetic name of .). They are studied by a method that goes back to Poincaré. This consists of choosing a point a of the closed orbit Ω, taking a small piece of hypersurface . through o and transverse to Ω, and for each . € . considering the first point . at which the or
45#
發(fā)表于 2025-3-29 10:44:51 | 只看該作者
46#
發(fā)表于 2025-3-29 13:52:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:00:05 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安国市| 法库县| 丰镇市| 桓仁| 师宗县| 铁岭市| 建宁县| 积石山| 甘肃省| 沙洋县| 沈丘县| 罗城| 洪江市| 昌黎县| 炉霍县| 满城县| 开封县| 仲巴县| 呼和浩特市| 贵溪市| 家居| 山东| 阳城县| 定安县| 图木舒克市| 庄浪县| 建湖县| 泸州市| 昭苏县| 平湖市| 邵阳县| 剑川县| 靖州| 镇坪县| 邢台市| 慈溪市| 汤原县| 青岛市| 海林市| 常宁市| 潜江市|