找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
21#
發(fā)表于 2025-3-25 07:01:47 | 只看該作者
Classification of Differentiable Functions,. We follow the method suggested by the Transversality Theorem in going from ’generic’ situations to more particular ones. First of all, as the Local Inversion Theorem shows, for a generic function f at a generic point a there is nothing to say: such a function can be written as . where . is one mem
22#
發(fā)表于 2025-3-25 08:13:22 | 只看該作者
Catastrophe Theory, most common applications we are concerned with potentials depending on a finite sequence of control parameters and we study the bifurcation of their equilibrium states. For the reasons given in the Introduction, we are particularly interested in . families. Moreover, what we want to do essentially
23#
發(fā)表于 2025-3-25 15:12:22 | 只看該作者
Vector Fields,by differential equations. We start by associating to each state of the system a ’representative’ point, and the set of these points forms what in general we call the . of the system. This representation of the state of a system by a point in phase space must be rich enough so that knowing the point
24#
發(fā)表于 2025-3-25 18:29:35 | 只看該作者
25#
發(fā)表于 2025-3-25 21:11:09 | 只看該作者
26#
發(fā)表于 2025-3-26 02:59:23 | 只看該作者
27#
發(fā)表于 2025-3-26 04:46:19 | 只看該作者
Bifurcations of Phase Portraits, (as in Chapt. 5, we may talk about control parameters, hidden parameters, imperfection parameters, … ) and we wish to understand how the phase portrait changes as the parameters vary. This is the question answered by catastrophe theory when we restrict to dissipative systems governed by a potential
28#
發(fā)表于 2025-3-26 09:48:01 | 只看該作者
29#
發(fā)表于 2025-3-26 13:39:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:07:27 | 只看該作者
https://doi.org/10.1007/978-3-642-57134-3Bifurcations; Catastrophes; Dynamical Systems; Maxima; Nonlinear; Singularities; catastrophe theory; diffeo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝兴县| 重庆市| 吉木乃县| 夹江县| 乌拉特中旗| 青川县| 鹤壁市| 灵丘县| 潞西市| 闸北区| 汾阳市| 龙岩市| 兴义市| 吉林省| 榕江县| 黎平县| 平凉市| 砀山县| 博兴县| 原阳县| 平湖市| 虎林市| 涿州市| 德清县| 外汇| 牟定县| 雷波县| 钟山县| 北海市| 香河县| 阿克陶县| 韩城市| 宁强县| 宜章县| 汨罗市| 通榆县| 德州市| 长治县| 汤阴县| 汨罗市| 上思县|