找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復制鏈接]
樓主: 調停
31#
發(fā)表于 2025-3-27 00:32:26 | 只看該作者
32#
發(fā)表于 2025-3-27 03:44:59 | 只看該作者
https://doi.org/10.1007/b137719In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
33#
發(fā)表于 2025-3-27 07:25:04 | 只看該作者
34#
發(fā)表于 2025-3-27 11:57:39 | 只看該作者
Introduction,In this introduction we try to give some idea of the motivation and content of the course of lectures on which this book was based. Most of the points mentioned will be discussed in the text, but some of them are referred to merely in order to indicate possible extensions.
35#
發(fā)表于 2025-3-27 14:08:44 | 只看該作者
Transversality Theorems,In this chapter we look into a topic which is the modern version of an old idea, namely ’general position’, and we shall try to explain why it is important.
36#
發(fā)表于 2025-3-27 19:38:20 | 只看該作者
Local Inversion,ther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
37#
發(fā)表于 2025-3-28 00:15:23 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
38#
發(fā)表于 2025-3-28 04:20:51 | 只看該作者
39#
發(fā)表于 2025-3-28 07:38:25 | 只看該作者
40#
發(fā)表于 2025-3-28 14:09:33 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-18 05:19
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阿克陶县| 晴隆县| 凌源市| 阜新市| 漳平市| 辉县市| 南投市| 庆云县| 嵩明县| 林甸县| 陇西县| 莆田市| 宜城市| 吉林市| 东乡| 巴林右旗| 玉树县| 喀喇| 康乐县| 五原县| 湘阴县| 平顶山市| 越西县| 富宁县| 苍溪县| 桃园市| 东兴市| 平和县| 江华| 桂林市| 青河县| 巫山县| 繁昌县| 榆林市| 贵溪市| 华阴市| 阳春市| 孟津县| 扎囊县| 古蔺县| 新泰市|