找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations and Catastrophes; Geometry of Solution Michel Demazure Textbook 2000 Springer-Verlag Berlin Heidelberg 2000 Bifurcations.Catas

[復(fù)制鏈接]
樓主: 調(diào)停
41#
發(fā)表于 2025-3-28 15:05:59 | 只看該作者
42#
發(fā)表于 2025-3-28 21:20:17 | 只看該作者
Sarah Blissett,Vaikom S. Mahadevan the neighbourhood of a singular point it is natural to linearize the problem, so that we are then investigating the phase portrait of a linear vector field (for which, incidentally, the local study at the origin and the global study are the same thing). In this chapter we shall see that such an app
43#
發(fā)表于 2025-3-29 00:18:52 | 只看該作者
Interventions in Career Design and Educationum point? This translates into our technical language as follows. Consider a vector field . on a phase space ., and a point . at which . 0 (recall that such a point is traditionally called a .. By differentiation at . we associate to these a linear vector field ., which we naturally call the . of .
44#
發(fā)表于 2025-3-29 05:32:05 | 只看該作者
Interventions in Career Design and Educationd orbits (known also under the poetic name of .). They are studied by a method that goes back to Poincaré. This consists of choosing a point a of the closed orbit Ω, taking a small piece of hypersurface . through o and transverse to Ω, and for each . € . considering the first point . at which the or
45#
發(fā)表于 2025-3-29 10:44:51 | 只看該作者
46#
發(fā)表于 2025-3-29 13:52:25 | 只看該作者
47#
發(fā)表于 2025-3-29 19:00:05 | 只看該作者
Karl-Heinz Deeg,Burkhard Trusenther is invertible, and what regularity can we hope for in the inverse map? In fact it is very rare to be able to prove that the map is globally invertible, and we have to restrict ourselves to a ’local’ statement.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南郑县| 调兵山市| 太康县| 海安县| 安徽省| 乡城县| 宁南县| 丰都县| 昭平县| 四川省| 永康市| 上犹县| 黄山市| 汾阳市| 克山县| 天祝| 巴林右旗| 盈江县| 麻城市| 临漳县| 通海县| 灵璧县| 呼图壁县| 安达市| 防城港市| 正镶白旗| 麻城市| 广南县| 积石山| 南丰县| 宜都市| 德令哈市| 呼伦贝尔市| 达尔| 凌海市| 梅河口市| 五指山市| 益阳市| 宁明县| 泰安市| 辰溪县|