找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復制鏈接]
樓主: 厭倦了我
11#
發(fā)表于 2025-3-23 11:47:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:23:17 | 只看該作者
David Raffaelli,Stephen Hawkinsith micromechanism by Krugman’s core–periphery model. The group-theoretic bifurcation analysis procedure presented in Chap. . is applied to a problem with the dihedral group, expressing the symmetry of the racetrack economy. The theoretically possible agglomeration (bifurcation) patterns of this eco
13#
發(fā)表于 2025-3-23 19:38:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:32:25 | 只看該作者
We Can and Must Understand Computers NOWysis of geometrical characteristics of the lattice, as a vital prerequisite for the group-theoretic bifurcation analysis of this lattice that will be conducted in Chaps. 6–9. Hexagonal distributions on this lattice, corresponding to those envisaged by Christaller and L?sch in central place theory (S
15#
發(fā)表于 2025-3-24 04:48:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:53:39 | 只看該作者
Najla AL-Qawasmeh,Muna Khayyat,Ching Y. Suenbranching lemma as a pertinent and sufficient means to test the existence of hexagonal bifurcating patterns on the hexagonal lattice. By the application of this lemma to the irreducible representations of the group ., all hexagonal distributions of Christaller and L?sch (Chaps. . and .) are shown to
18#
發(fā)表于 2025-3-24 18:45:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:03:17 | 只看該作者
tical and numerical recipe serviceable for wide audience.This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students wh
20#
發(fā)表于 2025-3-25 00:08:33 | 只看該作者
David Raffaelli,Stephen Hawkinsretic bifurcation analysis procedure under group symmetry is presented with particular emphasis on Liapunov–Schmidt reduction under symmetry. Bifurcation equation, equivariant branching lemma, and block-diagonalization are introduced as mathematical tools used to tackle bifurcation of a symmetric system in Chaps. .–..
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
石景山区| 东源县| 沅陵县| 三河市| 湖南省| 烟台市| 郓城县| 咸阳市| 阿巴嘎旗| 平潭县| 鄂伦春自治旗| 加查县| 阿鲁科尔沁旗| 乐山市| 美姑县| 雷山县| 贵定县| 宁乡县| 无锡市| 宁德市| 九江县| 奉贤区| 辽阳县| 布尔津县| 佳木斯市| 搜索| 三原县| 曲沃县| 花莲县| 郁南县| 于都县| 榆社县| 汕尾市| 抚远县| 定西市| 于都县| 封开县| 金昌市| 晋城| 绥滨县| 祥云县|