找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
41#
發(fā)表于 2025-3-28 16:30:06 | 只看該作者
Hexagonal Distributions on Hexagonal Latticeysis of geometrical characteristics of the lattice, as a vital prerequisite for the group-theoretic bifurcation analysis of this lattice that will be conducted in Chaps. 6–9. Hexagonal distributions on this lattice, corresponding to those envisaged by Christaller and L?sch in central place theory (S
42#
發(fā)表于 2025-3-28 20:04:50 | 只看該作者
Irreducible Representations of the Group for Hexagonal Latticewas described in . by the group ., which is the semidirect product of D. by .. In this chapter, the irreducible representations of this group are found according to a standard procedure in group representation theory known as the method of little groups, which exploits the semidirect product structu
43#
發(fā)表于 2025-3-29 01:13:27 | 只看該作者
Matrix Representation for Economy on Hexagonal Lattice . and .. In this chapter, the matrix representation of this group for the economy on the hexagonal lattice is investigated in preparation for the group-theoretic bifurcation analysis in search of bifurcating hexagonal patterns in Chaps. . and .. Irreducible decomposition of the matrix representatio
44#
發(fā)表于 2025-3-29 05:42:34 | 只看該作者
Hexagons of Christaller and L?sch: Using Equivariant Branching Lemmabranching lemma as a pertinent and sufficient means to test the existence of hexagonal bifurcating patterns on the hexagonal lattice. By the application of this lemma to the irreducible representations of the group ., all hexagonal distributions of Christaller and L?sch (Chaps. . and .) are shown to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凌海市| 镇原县| 托克托县| 锦屏县| 平山县| 万宁市| 通化市| 涪陵区| 邹城市| 永登县| 胶南市| 南昌市| 阳春市| 平昌县| 剑川县| 藁城市| 陆河县| 曲阜市| 石台县| 内乡县| 磐安县| 武安市| 镇沅| 长武县| 大兴区| 景谷| 留坝县| 泰安市| 安新县| 冷水江市| 东宁县| 宁海县| 离岛区| 通城县| 靖州| 神农架林区| 湾仔区| 锡林郭勒盟| 开平市| 仪陇县| 吉林省|