找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
41#
發(fā)表于 2025-3-28 16:30:06 | 只看該作者
Hexagonal Distributions on Hexagonal Latticeysis of geometrical characteristics of the lattice, as a vital prerequisite for the group-theoretic bifurcation analysis of this lattice that will be conducted in Chaps. 6–9. Hexagonal distributions on this lattice, corresponding to those envisaged by Christaller and L?sch in central place theory (S
42#
發(fā)表于 2025-3-28 20:04:50 | 只看該作者
Irreducible Representations of the Group for Hexagonal Latticewas described in . by the group ., which is the semidirect product of D. by .. In this chapter, the irreducible representations of this group are found according to a standard procedure in group representation theory known as the method of little groups, which exploits the semidirect product structu
43#
發(fā)表于 2025-3-29 01:13:27 | 只看該作者
Matrix Representation for Economy on Hexagonal Lattice . and .. In this chapter, the matrix representation of this group for the economy on the hexagonal lattice is investigated in preparation for the group-theoretic bifurcation analysis in search of bifurcating hexagonal patterns in Chaps. . and .. Irreducible decomposition of the matrix representatio
44#
發(fā)表于 2025-3-29 05:42:34 | 只看該作者
Hexagons of Christaller and L?sch: Using Equivariant Branching Lemmabranching lemma as a pertinent and sufficient means to test the existence of hexagonal bifurcating patterns on the hexagonal lattice. By the application of this lemma to the irreducible representations of the group ., all hexagonal distributions of Christaller and L?sch (Chaps. . and .) are shown to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
美姑县| 喀喇沁旗| 景泰县| 秦皇岛市| 乌兰察布市| 丹巴县| 广饶县| 浪卡子县| 宝兴县| 寻乌县| 曲阳县| 阳春市| 叙永县| 杭州市| 隆子县| 应用必备| 禄劝| 宜阳县| 安平县| 安宁市| 友谊县| 石泉县| 建始县| 疏附县| 南召县| 平泉县| 舞钢市| 阳新县| 准格尔旗| 扶沟县| 白水县| 岳西县| 梓潼县| 共和县| 东港市| 舞阳县| 三门峡市| 合水县| 石柱| 牡丹江市| 栖霞市|