找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復制鏈接]
查看: 23503|回復: 43
樓主
發(fā)表于 2025-3-21 16:43:53 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography
影響因子2023Kiyohiro Ikeda,Kazuo Murota
視頻videohttp://file.papertrans.cn/186/185530/185530.mp4
發(fā)行地址Attractive new research field for bifurcation theory.Interdisciplinary study of economic geography and nonlinear mathematics.Detailed theoretical and numerical recipe serviceable for wide audience
圖書封面Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography;  Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip
影響因子.This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered i
Pindex Book 2014
The information of publication is updating

書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography影響因子(影響力)




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography影響因子(影響力)學科排名




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography網(wǎng)絡公開度




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography網(wǎng)絡公開度學科排名




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography被引頻次




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography被引頻次學科排名




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography年度引用




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography年度引用學科排名




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography讀者反饋




書目名稱Bifurcation Theory for Hexagonal Agglomeration in Economic Geography讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:29:41 | 只看該作者
Bifurcation Theory for Hexagonal Agglomeration in Economic Geography978-4-431-54258-2
板凳
發(fā)表于 2025-3-22 02:44:49 | 只看該作者
地板
發(fā)表于 2025-3-22 08:08:49 | 只看該作者
We Can and Must Understand Computers NOWgroups of order .) expressing translational symmetry in two directions. Subgroups relevant to hexagonal distributions of this group are obtained by geometrical consideration and classified in accordance with the study of central place theory.
5#
發(fā)表于 2025-3-22 12:00:36 | 只看該作者
6#
發(fā)表于 2025-3-22 15:07:18 | 只看該作者
7#
發(fā)表于 2025-3-22 18:51:21 | 只看該作者
8#
發(fā)表于 2025-3-22 22:56:17 | 只看該作者
http://image.papertrans.cn/b/image/185530.jpg
9#
發(fā)表于 2025-3-23 03:09:39 | 只看該作者
10#
發(fā)表于 2025-3-23 07:50:11 | 只看該作者
Intertextualit?t und Intermedialit?tthis study is demonstrated. Christaller’s three hexagonal market areas associated with market, traffic, and administrative principles and L?sch’s hexagons derived from geometrical consideration in central place theory are introduced. As a step toward a connection with the real world, self-organizati
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
都兰县| 红原县| 天津市| 南平市| 板桥市| 天长市| 大冶市| 福海县| 墨竹工卡县| 应城市| 巴塘县| 岗巴县| 措勤县| 泸州市| 吉安市| 法库县| 久治县| 云浮市| 满洲里市| 察雅县| 汕头市| 建昌县| 天门市| 晋宁县| 济阳县| 安龙县| 桃园县| 深州市| 南平市| 蕲春县| 宜州市| 林芝县| 宽甸| 怀安县| 泰顺县| 浦城县| 新河县| 东丽区| 温泉县| 拉萨市| 榆林市|